
Shadow Techniques from Final Fantasy XVI

Sammy Fatnassi

July 31, 2023

Revision 1

© SQUARE ENIX
LOGO ILLUSTRATION : © 2020 YOSHITAKA AMANO
http://www.jp.square-enix.com/tech/publications.html

Contents

1 Introduction 3

2 Deferred Shadows 4
2.1 Phase: Prepare . 5
2.2 Phase: Find Lights Approximate . 8
2.3 Phase: Find Lights Accurate . 11
2.4 Phase: Generate Deferred Shadows . 14
2.5 Phase: High Quality Shadows . 16

3 High Quality Shadow 17
3.1 Step: Prepare . 18
3.2 Step: Closeup Shadowmap Draws . 19
3.3 Step: Closeup Shadowmap Resolve . 19
3.4 Step: Shadows Composition . 20
3.5 Step: Standard Shadowmap Transfer . 23
3.6 Results . 23

4 Light leak reduction 27
4.1 Hardware Depth Bias . 28
4.2 Oriented Depth Bias . 28
4.3 Results . 30

5 Visualizers 32
5.1 Shadow . 33
5.2 Visibility Slot . 33
5.3 Light Culling . 34
5.4 Light Count . 35

6 Conclusion 36

7 Acknowledgements 36

Glossary 36

© SQUARE ENIX 2

1 Introduction

Final Fantasy is a renowned video game franchise with riveting
stories accompanied by incredible graphics, each iteration push-
ing forward the expectation of what is possible. In this paper,
I present implementation details of high-quality shadow genera-
tion in the context of real-time rendering in Final Fantasy XVI.
This document covers only a subset of techniques novel enough to
share. The production of any game is a colossal team effort and
in respect to this ’our’ is used when referring to the technology
and ’I’ for the author.

In sections 2 and 3, I present our Tiled Deferred Shadow renderer
that reduces GPU computing cost and improves the quality of
character shadows when paired with iteratively composited High-
Quality Shadows over the previous Tiled Deferred Shadow results.

In section 4, I discuss a new method named Oriented Depth Bias to solve issues associated with
the use of Shadowmap. This simple approach handles self shadow issues (shadow acne) and
is effective in replacing the hardware depth bias traditionally used. In section 5, I present
visualizers for the inspection of results and diagnosing problems that indirect computing of
shadows makes arduous to investigate otherwise. Section 6 close with some conclusions.

© SQUARE ENIX 3

2 Deferred Shadows

The Tiled Deferred Lighting technique made possible by programmable GPU shaders, intro-
duced a paradigm shift in real-time rendering. It allowed splitting surface parameter computa-
tion from lighting calculations and lead to improved performance at the cost of higher memory
usage. This is achieved by storing surface parameters in Geometry Buffers (known as GBuffers)
as a first pass, deferring the costly lighting computation to a second pass limited to the visible
pixels. It has since been adopted by most games for their lighting solution, including Final
Fantasy XVI.

In ‘A Scalable Real-Time Many-Shadowed-Light Rendering System’ [2], Li Bo introduced the
‘Tiled Deferred Shadow ’ technique, further splitting the shadow from the lighting computation
and resulting in performance improvement by reducing VGPR Pressure in the lighting pass.
By extending this technique, we were able to additionally support an arbitrary number of
high-quality shadows on object/light pairs, thanks to the addition of our Closeup Shadowmap
technique. The memory overhead remained low and fixed no matter the number of Closeup
Shadowmaps by rendering their Shadowmap iteratively and re-using the same render target.

A rudimentary Tiled Deferred Shadow system requires little implementation effort when already
using a Tiled Deferred Lighting renderer. It can be achieved by moving the per pixel visibility
computation of each light from the Tiled Deferred Lighting pass to a new Tiled Deferred Shadow
pass and storing intermediate results in buffers that are read back by the Tiled Deferred Lighting
pass. However, this näıve approach increases the memory budget to unrealistic levels when
expecting support for many lights per pixels. This section goes over our Tiled Deferred Shadow
implementation details that achieved better performance and memory reduction (see figure
1 for a quick overview). The first phase runs on the CPU and initiates the separates GPU
dispatches of the following Tiled Deferred Shadow phases.

Figure 1: Tiled Deferred Shadow flow

© SQUARE ENIX 4

2.1 Phase: Prepare

1.Prepare 2.Approx. 3.Find Lights 4.Generate 5.HiQuality

In this initial phase, multiple lists of lights are generated on the CPU to be used as buffer inputs
in the following phases accelerating the shadow processing. It is the only step not processed on
the GPU.

2.1.1 Output: zBin Buffer

This buffer is used to quickly reject lights outside a depth distance (see ’Clustered Deferred and
Forward Shading’ [4] for more information). We discretize our scene view depth range in 1024
intervals called zBin and store a list of valid lights for each one. By first sorting the lights by
their closest distance to the scene view near plane, storage requirements are greatly reduced by
only keeping the minimum and maximum light index of each zBin (see figure 2a).

Figure 2a shows a sample of a scene view discretized in 20 zBins. For any single depth value,
the associated zBin is selected to know that potentially valid lights are between min and max
(inclusively). For example, with a depth value in zBin 10, lights indices between 1 and 2 are
found to be the only potentially valid ones.

Using zBins works well for single-depth values but falls short when used to find lights inside
a depth range. Simply taking the minimum and maximum light indices of the first and last
zBins does not guarantee valid results (see figures 3a and 3b for error examples). Iterating
every zBins in a depth range solves this but without the speed benefits of finding the minimum
and maximum light indices with only two lookups. Our solution to this is to generate a second
zBin dataset named zBin (ranged) and fill it with values handling depth ranges (see figure 2b).

� For each zBin ’min light index’, we save lowest value between the current and last zBin.

� For each zBin ’max light index’, we save highest value between the current and first zBin.

Since the zBin (ranged) results are more conservative than the standard zBin ones (more false
positives), both datasets are stored in the zBin Buffer. With depth values inside 1 or 2 con-
tiguous zBins, we use the standard zBin buffer and the zBin (ranged) buffer otherwise.

© SQUARE ENIX 5

(a) Standard zBin: for any single scene view
depth, we find the associated zBin to know that
potentially valid lights are between min and max
(inclusively). For example, for a depth value in
zBin 10, we find that the potentially valid light
indices are between 1 and 2.

(b) Ranged zBin: for a scene view depth range,
we find the associated first and last zBins to know
that potentially valid lights are between first zBin
min and last zBin max (inclusively). For exam-
ple, for depth values starting in zBin 2 and ending
in zBin 13, we find that the potentially valid light
indices are between 0 and 2.

Figure 2: Scene view discretized in 20 zBins with light indices sorted by their closest distance
to the scene near plane.

(a) In zBin range [3,11] we find light indices [0,1],
missing index 2.

(b) In zBin range [0,13] we find no light index,
missing indices 0,1,2 entirely.

Figure 3: Error examples when relying on the first and last zBin entries of a depth range to
find the valid light indices.

© SQUARE ENIX 6

2.1.2 Output: Tile Light Mask Buffer

This buffer is used to quickly discard lights outside a Tile’s screen area. To reduce the memory
requirement of supporting 1024 lights per Tile while keeping a predictable direct access to
results, a 32 Bytes bit-field is used with an additional 4 Bytes bit-field for skipping a group of
32 consecutive invalids’ lights (see figure 4).

While the Shadow Tile size used by the Tiled Deferred Shadow is set to 8x8 pixels, we keep the
CPU computation cost of this buffer down by using larger Tiles of 32x32 pixels (see figure 5).
In 4K resolution, this translates to only processing 8,100 Tiles, down from the original 129,600,
at the cost of a slight increase in false positives discarded in the next phase (see section 2.2).

Figure 4: Light Mask Bit-Fields Format : Each of the 1024 lights has 1 bit to store its
validity using the light index as an offset in the last 32 Bytes of the associated Tile Light Mask
Buffer entry. Additionally, groups of 32 consecutive lights are formed and use 1 bit in the first
4 bytes of the Tile Light Mask Buffer to indicate when they have at least one valid light. We
use this to accelerate iteration over the lights by ignoring empty ranges. In this example, Light
Groups 0, 2 and 31 are marked active because they each have at least 1 associated valid light.

Figure 5: Comparison of a Shadow Tile used as a Compute Work Unit size on GPU and a Tile
Light Mask Buffer entry’s area size when storing the validity of lights per screen region.

© SQUARE ENIX 7

2.2 Phase: Find Lights Approximate

1.Prepare 2.Approx. 3.Find Lights 4.Generate 5.HiQuality

This second phase has two objectives: finding the potentially valid lights per Shadow Tile
and reserving memory for storage of light lists built in the following phases. We operate in
Compute Work Units of 8x8 and keep this phase inexpensive by evaluating 1 Shadow Tile per
thread instead of processing per pixel results. We prioritize speed over accuracy with some
false positives expected that the next phase will filter out.

First, each Shadow Tile minimum and maximum scene depths are fetched from the Hierarchical
Depth Buffer 1 to generate a Froxel by combining them with the screen coordinates. Next, the
Froxel valid light indices are found by keeping the lights present in both the corresponding
Tile Light Mask Buffer and the zBin Buffer entries. We finalize vetting each light using bound
intersections with the Froxel using a quick sphere/sphere test, a cone/sphere test taken from
the article ‘Cull That Cone!’ [1], and an axis aligned bounding box (AABB) test by bringing
the voxel into the light clipping space (see listing 2 for more details).

2.2.1 Output: Tile Group Light Mask Buffer

Not to be confused with the previously introduced Tile Light Mask Buffer, this buffer stores the
valid lights approximation per Tile Group. To reduce the memory usage, we use one Light Mask
Entry per 8x8 Shadow Tiles, using the format introduced in figure 4. In 4K resolution, this
brings the memory usage from ∼4.4MB to ∼0.3MB. By using Compute Work Units matching
the Tile Group size, we leverage fast Lane Operators in the computation to avoid slow memory
exchange between threads.

2.2.2 Output: Tile Light SlotID Buffer

This buffer stores the Light SlotID of each Shadow Tile after computation. Few Shadow Tiles
contain a high number of lights and allocating the same fixed amount of memory for all to
handle the maximum count is wasteful. Instead, a flexible memory approach is used where
each Shadow Tile reserves enough memory in a shared buffer to handles their approximated
light count. This allows support for a greater number of lights per Shadow Tile while reducing
the memory consumption of the two light lists generated in the following phases. With this
approach, the associated memory usage went from ∼22.1MB to ∼5.5MB.

To assign a Light SlotID per Shadow Tile, one Compute Shader Thread per Compute Work Unit
first sums up the number of valid lights in the entire Tile Group. Next, it reserve memory for
these entries with a single atomic increment on a shared global counter2. Finally, each thread
computes its own Shadow Tile’s Light SlotID by offsetting the atomic value by the number of
entries used by previous Tiles in the Tile Group. This computation relies on lane operations
as much as possible for a speed boost when accessing neighboring thread’s values.

Note: It is helpful to also support a debug mode without the flexible memory approach, allo-
cating space for a fixed number of lights per Shadow Tile instead. Because the Light SlotID
values are now predictable (no a priori needed besides the Shadow Tile coordinates) it becomes
easier to inspect the Shadow Tile light lists produced in the next steps.

1When detecting a maximum scene depth matching the scene view far plane (skybox’s pixel for example), we
read each pixel’s scene depth individually to find the maximum valid depth. This substantially reduce the
number of false positive lights caused.

2The single thread access greatly reduces atomic contention and improves performance.

© SQUARE ENIX 8

1 globallycoherent RWByteAddressBuffer rw_SlotCounters;

2

3 // ==

4 // Allocate a ShadowSlotID that will be used to store list of lights

5 uint AllocateShadowSlotID(in uint inTileIndex , in uint inTileLightCount)

6 {

7 // Reserve fixed amount of memory for debuging with predictable location

8 if(DEBUG_FIXED_LIGHTCOUNT > 0){

9 return inTileIndex * RoundUp(DEBUG_FIXED_LIGHTCOUNT , 3);

10 }

11

12 // Round up to next multiple becase 3 indices stored per uint

13 inTileLightCount = RoundUp(inTileLightCount , 3);

14 uint tileGrpLightCount = WaveActiveSum(tileLightCount);

15 uint tileGrpSlotID = 0;

16

17 // Single thread allocates space for entire TileGroup

18 if(WaveIsFirstLane ()){

19 static const uint kShadowCounterOffset = 0;

20 rw_SlotCounters.InterlockedAdd(kShadowCounterOffset ,

21 tileGrpLightCount ,

22 tileGrpSlotID);

23 }

24

25 // Tile get its SlotID by offsetting the starting location of the

26 // Group reserved memory with the sum of previous Tile Slots count

27 uint shadowSlotID = WaveReadLaneFirst(tileGrpSlotID);

28 shadowSlotID += WavePrefixSum(inTileLightCount);

29 return shadowSlotID;

30 }

31

32 // ==

33 // Allocate a VisibilitySlotID that will be used to store the visibility

34 // of one light at each pixel of a Tile (1 slot = 8x8 pixels (64 bytes))

35 uint AllocateVisibilitySlotID ()

36 {

37 // Single thread allocates space for entire Tile

38 uint slotID;

39 if(WaveIsFirstLane ()){

40 static const uint kVisibilityCounterOffset = 4;

41 rw_SlotCounters.InterlockedAdd(kVisibilityCounterOffset , 1, slotID);

42 }

43

44 uint visibilitySlotID = WaveReadLaneFirst(slotID);

45 return visibilitySlotID;

46 }

Listing 1: ’SlotID allocator’ compute shader pseudo code

© SQUARE ENIX 9

1 RWByteAddressBuffer rw_TileShadowSlotIds;

2 RWByteAddressBuffer rw_TileGroupLightMask;

3

4 // Work unit outputs 1 TileGroup (8x8 Tiles), each thread evaluate 1 Tile

5 [numthreads(TILE_LIGHTGROUP_SIZE , TILE_LIGHTGROUP_SIZE , 1)]

6 void CS_Phase2_FindLightsApprox(uint2 inTileCoord : SV_DispatchThreadID)

7 {

8 bool isValidTile = all(inTileCoord < cCommon.m_TileResolution.xy);

9 if(isValidTile){

10 const uint tileIdx = GetTileIndex(inTileCoord);

11 const float2 tileNearFar = GetTileNearFarDepth(inTileCoord);

12 const int2 zBinIndexMinMax = GetZBinIndexFromDepth(tileNearFar);

13 const ZBin binRange = GetRangeZBinFromIndex(zBinIndexMinMax);

14 uint lightGroupMask = GetTileLightGroupMask(inTileCoord);

15 lightGroupMask = IntersectLightGroup(binRange , lightGroupMask);

16 uint tileLightCount = 0;

17 uint validLightGrpMask = 0;

18 // --

19 // Process each valid group of 32 lights

20 while (lightGroupMask) {

21 uint validLightMask = 0;

22 uint lightGrpBit = firstbitlow(lightGroupMask);

23 uint lightMask = GetTileLightMask(lightGrpBit);

24 lightMask = IntersectLightMask(binRange , lightMask);

25 // --

26 // Process each valid light in current group of 32 lights

27 while(lightMask){

28 uint lightBit = firstbitlow(lightMask);

29 uint lightIdx = lightGrpBit *32 + lightBit;

30 LightInfo lightInfo = GetLightInfo(lightIdx);

31 // All intersection tests between ’Light/Froxel ’ here

32 bool bValidLight = LightFroxelTests(lightInfo , inTileCoord);

33 lightMask ^= 1u << lightBit; // Remove processed light

34 if(bValidLight){

35 tileLightCount += 1;

36 validLightMask |= 1 << lightBit;

37 }

38 }

39 // Store light indices validity of current group with 32bits mask

40 uint tileGroupLightMask = WaveActiveBitOr(validLightMask);

41 if(WaveIsFirstLane ()){

42 uint lightMaskAdr = GetLightMaskEntryAdress(tileIdx , lightGrpBit);

43 rw_TileGroupLightMask.Store(lightMaskAdr , tileGroupLightMask);

44 }

45 // --

46 // Detect if current 32 lights group is valid in any Tile of TileGroup

47 validLightGrpMask |= tileGroupLightMask != 0 ? 1 << lightGrpBit : 0;

48 lightGroupMask ^= 1 << lightGrpBit; // Remove processed group

49 }

50 // --

51 // Store LightGroup mask entry for the TileGroup

52 if(WaveIsFirstLane ()){

53 uint lightMaskAdr = GetLightMaskGroupAdress(tileIdx);

54 rw_TileGroupLightMask.Store(lightMaskAdr , validLightGrpMask);

55 }

56 // Allocate and store each Tile ShadowSlotIDs

57 uint shadowSlotID = AllocateShadowSlotID(tileIdx , tileLightCount);

58 rw_TileShadowSlotIds.Store(tileIdx*4, shadowSlotID);

59 }

60 }

Listing 2: ’Find Lights Approximate’ compute shader pseudo code

© SQUARE ENIX 10

2.3 Phase: Find Lights Accurate

1.Prepare 2.Approx. 3.Find Lights 4.Generate 5.HiQuality

This 3rd phase filter light indices from the Tile Group Light Mask Buffer using more accurate
per pixel tests on each Shadow Tile. Since previous results are shared by multiple Shadow Tiles
and the Froxel tests create false positives (see figure 6) we eliminate as many as possible before
computing the shadows in the next step. A list of lights per Shadow Tile is stored in an Early
Light List buffer at a location calculated from the Light SlotID. The work is accomplished by
a compute shader using a group size matching our Shadow Tile size of 8x8 pixels. With each
Compute thread handling 1 pixel, we read the scene depth and iterate over the Tile Group
lights found in the Tile Group Light Mask Buffer entry. The Shadow Tiles consider a light
valid when it is in range of at least one of its pixels.

Figure 6: Accuracy error in approximation of lights found in a Shadow Tile. Two
Froxels are illustrated here, delimited by their Shadow Tile bound plus the minimum and
maximum pixel depth. In Shadow Tile 1, the lights A & D are the only ones found when using
an accurate test. With the quicker approximation, lights B & C are also detected incorrectly
(no influence on pixels of this Shadow Tile). Light B because it is inside the Shadow Tile Froxel.
And light C, because it is valid in a neighbor and results are shared between 8x8 Tiles.

© SQUARE ENIX 11

2.3.1 Output: Early Light List Buffer

This buffer contains information on the lights found in each Shadow Tile. To minimize memory
usage, we store 3 indices per 4 Bytes, giving us 10 usable bits for a maximum index value of
1023 (see figure 7a for details). An additional buffer is also written with the number of valid
lights in each Shadow Tile list.

(a) Data format for 1 Shadow Tile entry in
the Early Light List buffer. It contains a list
of valid light indices found in this Tile during the
Find Lights Accurate phase.

(b) Data format for 1 Shadow Tile entry
in the Final Light List Buffer. It contains a
list of valid light indices found in this Tile during
the Generate Shadows phase by processing lights
found in the Early Light List buffer. It addition-
ally contains the Visibility SlotID used to retrieve
the per pixel visibility or a flag marking the en-
tire Tile to be in shadow or light.

Figure 7: Entries formats for two types of light lists generated per Shadow Tile. Each list’s
memory is allocated by the Find Lights Approximate phase using the Tile approximated light
count, but the actual number stored can be less since the phases outputting them are more
accurate.

© SQUARE ENIX 12

1 ByteAddressBuffer tTileShadowSlotIds

2 ByteAddressBuffer tTileGroupLightMask;

3 RWByteAddressBuffer rw_TileLightListEarly;

4 RWByteAddressBuffer rw_TileLightCountEarly;

5

6 // Work Unit outputs 1 Tile (8x8 pixels), each thread evaluates 1 pixel

7 [numthreads(SHADOWTILE_SIZE , SHADOWTILE_SIZE , 1)]

8 void CS_Phase3_FindLightsAccurate(uint inThreadIdx : SV_GroupIndex ,

9 uint2 inTileCoord : SV_GroupID ,

10 uint2 inPixelCoord : SV_DispatchThreadID)

11 {

12 const uint tileIdx = GetTileIndex(inTileCoord);

13 const uint shadowSlotID = tTileShadowSlotIds.Load(tileIdx *4);

14 const float depth = GetDepth(inPixelCoord);

15 const float3 worldPos = GetWorldPosFromScreen(inPixelCoord , depth);

16 const bool isValidPixel = !IsFar(depth) &&

17 all(inPixelCoord < cCommon.m_Resolution);

18 uint lightMaskAdr = GetLightMaskGroupAdress(tileIdx);

19 uint lightGrpMask = tTileGroupLightMask.Load(lightMaskAdr);

20 uint lightCount = 0; // Number of valid light found in Tile

21 uint lightIdxPacked = 0; // Pack multiple light indices per uint

22 // --

23 // Process each valid group of 32 lights

24 while (lightGrpMask != 0) {

25 uint lightGrpBit = firstbitlow(lightGrpMask);

26 lightMaskAdr = GetLightMaskEntryAdress(tileIdx , lightGrpBit);

27 uint lightMask = tTileGroupLightMask.Load(lightMaskAdr);

28 lightGrpMask ^= (1<< firstGroupBit); // Remove processed group

29 // --

30 // Process each valid light in current group

31 while (lightMask != 0) {

32 uint lightBit = firstbitlow(lightMask);

33 uint lightIdx = (lightGrpBit * 32) + lightBit;

34 LightInfo lightInfo = GetLightInfo(lightIdx);

35 lightMask ^= 1u << lightBit; // Remove processed light

36 // Check if pixel is in range of the light

37 bool bValidLight = isValidPixel &&

38 LightPixelTests(lightInfo , worldPos);

39 // Add light indice to our list

40 if(WaveActiveAnyTrue(bValidLight) && WaveIsFirstLane ()){

41 lightIdxPacked = lightIdxPacked | (lightIdx << 10*(lightCount %3));

42 lightCount ++;

43 if((lightCount % 3) == 0){

44 uint outputAdr = GetListAddress(shadowSlotID , lightCount);

45 rw_TileLightListEarly.Store(outputAdr , lightIdxPacked);

46 lightIdxPacked = 0;

47 }

48 }

49 }

50 }

51 // --

52 // Store Tile’s Light Count in early Light List

53 if(WaveIsFirstLane ()){

54 rw_TileLightCountEarly.Store(tileIdx*4, lightCount);

55 if ((lightCount % 3) != 0) { // output pending packed indices

56 uint outputAdr = GetListAddress(shadowSlotID , lightCount);

57 rw_TileLightListEarly.Store(outputAdr , lightIdxPacked);

58 }

59 }

60 }

Listing 3: ’Find Lights Accurate’ compute shader pseudo code

© SQUARE ENIX 13

2.4 Phase: Generate Deferred Shadows

1.Prepare 2.Approx. 3.Find Lights 4.Generate 5.HiQuality

The 4th phase computes the per pixel visibility of each light with code imported from the original
deferred lighting shader. Using the list of lights from the Shadow Tile entry in the Early Light
List buffer, we iterate them to generate shadows using Percentage Closer Soft Shadows, but it
can be substituted by any other technique.

To reduce the memory usage of our shadow results, we again use a flexible storage approach
to avoid allocating one fullscreen buffer for each of the maximum number of lights per Shadow
Tile supported. This allows us to reduce our buffer size from ∼253MB to ∼63MB. Instead of
having a fixed maximum number of lights, each Shadow Tile has as many light results as needed
using storage in a shared buffer. We pick a buffer size sufficient to handle the game’s worst-case
scenario and could be easily modified to adjust dynamically with the number of lights in the
level.

We use a dispatch group size of 8x8 to handle one Shadow Tile per work unit and with each
thread handling a single pixel. When a Shadow Tile is entirely obscured, it is ignored and never
outputted. When a Shadow Tile is entirely in light, we output the light index and a fully lit flag.
Avoiding light/pixel information storage in these two cases saves a large amount of memory.
When a Shadow Tile contains partial shadows, we store the per pixel results by assigning it a
Visibility SlotID computed from a shared global counter with an atomic operation. The light
visibility ratio uses 8 bits per pixel, so each Visibility Slot entry needs 64 Bytes of memory.

2.4.1 Output: Final Light List Buffer

This buffer stores per Shadow Tile entries and contains the indices of the visible lights that are
not entirely in shadow. Along each light index, we store the fully lit flag or the Visibility SlotID
when allocated. 10 bits are used for the light index and 22 bits for the Visibility SlotID (see figure
7b), enough for ∼4 million entries or 32 partial shadow lights per Shadow Tile in 4k resolution.
In practice, most of the Light/Tile pairs do not need a Visibility Slot, so we can support a
higher number of lights per Shadow Tile, only limited by the size of the VisibilityBuffer. An
additional buffer is also written with the number of valid lights in each Shadow Tiles list.

2.4.2 Output: VisibilityBuffer

This buffer contains 8x8 memory blocks used to store the per pixels light visibility of a Shadow
Tile. This is the largest intermediate buffer needed by the deferred shadow system and can be
discarded for the remainder of the frame, once the lighting phase is completed (same is true for
the other buffers). Each pixel uses 8 bits to represent the percentage of light visibility, but 4
bits might be sufficient quality depending on the needs of a project.

© SQUARE ENIX 14

1 ByteAddressBuffer tTileShadowSlotIds

2 ByteAddressBuffer tTileLightListEarly;

3 ByteAddressBuffer tTileLightCountEarly;

4 RWByteAddressBuffer rw_TileLightListFinal;

5 RWByteAddressBuffer rw_TileLightCountFinal;

6 RWByteAddressBuffer rw_TileLightVisibility;

7

8 // Work Unit outputs 1 Tile (8x8 pixels), each thread evaluates 1 pixel

9 [numthreads(SHADOWTILE_SIZE , SHADOWTILE_SIZE , 1)]

10 void CS_Phase4_GenerateShadows(uint inThreadIdx : SV_GroupIndex ,

11 uint2 inTileCoord : SV_GroupID ,

12 uint2 inPixelCoord : SV_DispatchThreadID)

13 {

14 const uint tileIdx = GetTileIndex(inTileCoord);

15 const uint shadowSlotID = tTileShadowSlotIds.Load(tileIdx *4);

16 const uint earlyLightCount = tTileLightCountEarly.Load(tileIdx *4);

17 const float depth = GetDepth(inPixelCoord);

18 const float3 worldPos = GetWorldPosFromScreen(inPixelCoord , depth);

19 const bool isValid = !IsFar(depth) &&

20 all(inPixelCoord < cCommon.m_Resolution);

21 // --

22 // Iterate every light previously detected (in Early List light)

23 uint finalLightCount = 0;

24 uint entryIdx = 0;

25 while(entryIdx < earlyLightCount){

26 uint lightIdx = GetNextEarlyLight(shadowSlotID , entryIdx);

27 // Standard Shadow generation per pixel happen here

28 float viz = ComputeLightVisibility(lightIdx , worldPos);

29 bool isAllLit = WaveActiveAllTrue(viz > 0.9999 || !isValid);

30 bool isAllShadow = WaveActiveAllTrue(viz < 0.0001 || !isValid);

31 bool hasPenumbra = !isAllLit && !isAllShadow;

32 // --

33 // Only write out light if not entirely in shadow

34 if(!isAllShadow){

35 uint vizSlotID = SLOTID_ALL_LIT;

36 // Per Pixel visibility generation when partial shadow detected

37 if(hasPenumbra){

38 vizSlotID = AllocateVisibilitySlotID (); // 1 Slot/tile

39 StoreVisibility(vizSlotID , inThreadIdx , visibility);

40 }

41 // Output packed light index and VisibilitySlotID/Flag

42 uint packedValue = PackLightIndexFinal(lightIdx , vizSlotID);

43 uint outputAdr = GetListFinalAddress(shadowSlotID , finalLightCount);

44 rw_TileLightListFinal.Store(outputAdr , packedValue);

45 finalLightCount ++;

46 }

47 entryIdx ++;

48 }

49 // --

50 // Store Tile’s Light Count in Final Light List

51 if(WaveIsFirstLane ()){

52 rw_TileLightCountFinal.Store(tileIdx*4, finalLightCount);

53 }

54 }

Listing 4: ’Generate Deferred Shadows’ compute shader pseudo code

© SQUARE ENIX 15

2.5 Phase: High Quality Shadows

1.Prepare 2.Approx. 3.Find Lights 4.Generate 5.HiQuality

The final 5th phase processes higher quality shadows of important characters. They are withheld
from the Standard Shadowmaps and drawn in dedicated Closeup Shadowmaps instead. Using a
custom field of view constrained to the character bound rather than the light leads to a smaller
solid angle per pixel and improves resolution. To avoid the high memory overhead of allocating
one Closeup Shadowmap per light/character pair, we re-use the same one after completing a full
update loop (see figure 8) and composite the character shadow over the existing VisibilityBuffer.
Given the scope of this topic, I present an in-depth explanation in section 3.

2.5.1 Output: Updated Final Light List Buffer

When a Shadow Tile goes from fully lit to partially lit, a Visibility Slot needs to be allocated
and the Visibility SlotID saved. Conversely, a Shadow Tile that becomes fully unlit needs to
be known by replacing the Visibility SlotID with a fully unlit flag. Both cases are handled by
updating the Shadow Tile entry in the Final Light List Buffer.

2.5.2 Output: Updated VisibilityBuffer

Light visibility is computed using the same technique presented in section 2.4.2 but using the
Closeup Shadowmap for shadow generation. When a light/pixel visibility is reduced, its value
in the VisibilityBuffer gets updated.

2.5.3 Output: Updated Standard Shadowmap

We avoid increasing the draw count of a character with High-Quality Shadow by skipping the
Standard Shadowmap and only rendering them in the Closeup Shadowmap. However, forward-
lit objects cannot rely on deferred lighting, so the Standard Shadowmap needs to have each
Closeup Shadowmap composited over its content. This makes the character shadow available
to the forward renderer but without the higher-quality benefit.

© SQUARE ENIX 16

3 High Quality Shadow

Final Fantasy XVI’s emphasis on characters using cinematic close-ups on characters during
dialogues makes it important to have higher quality shadows without flickering artefacts dis-
tracting players from the scene. This can be achieved by using a separate Closeup Shadowmap
for each character / light pairing. We want support for an unlimited number of pairings without
a high memory overhead proportional to their number. Building on our Tiled Deferred Shadow
implementation, we have a High-Quality Shadow system incrementally processing each char-
acter/light shadow with a single reused Closeup Shadowmap. This phase contains 5 sub-steps
described in the following sections.

© SQUARE ENIX 17

Figure 8: Closeup rendering flow: Rendering steps needed to generate shadows for each
Closeup (character/light pairs). We iterate over each pair until they all have been handled.

3.1 Step: Prepare

On the CPU side, we calculate a new camera view whose frustum is constrained by the smallest
field of view between the character’s bound and the light’s bound (see figure 9). Since we are
using a separate Shadowmap, its resolution can be higher than the light’s Standard Shadowmap,
leading to even more quality by decreasing the solid angle per pixel further. Our Closeup
Shadowmap is allocated with 2048x2048 pixels, but each High-Quality Shadow adjusts down the
resolution used based on the light’s estimated screen coverage. Finally, we send the commands
to clear the Closeup Shadowmap on the GPU at the start of each High-Quality Shadow.

© SQUARE ENIX 18

(a) Without any Closeup.

(b) With two Closeups.

Figure 9: With High-Quality Shadows assigned to light/cactuar pairs, we improve the Shad-
owmap resolution use with a narrower field of view, so pixels handle less solid angle (see red
area covered by 1 pixel). The depth precision is also increased by moving the near and far
planes closer to the subject.

3.2 Step: Closeup Shadowmap Draws

We avoid drawing the character mesh more than once per light by redirecting its drawcalls from
the light’s Standard Shadowmap to the High-Quality Shadow’s Closeup Shadowmap. How this
is done varies on each rendering engine’s implementation.

3.3 Step: Closeup Shadowmap Resolve

Once the Closeup Shadowmap draws are completed, we resolve the associated hierarchical depth
buffer and generate a mipmapped version of the Shadowmap, keeping the nearest distance to
the light at each 2x2 pixels.

© SQUARE ENIX 19

3.4 Step: Shadows Composition

On the CPU, we build the character’s umbra volume by extending rays from the light origin to
each bound’s positions until the light radius is reached. After projection in screen coordinates,
we find the minimum and maximum positions to launch compute work units limited to the
affected Shadow Tiles (see figure 10).

In the compute shader, each work unit looks for the associated light index in its Final Light
List buffer entry. When not found or flagged to be entirely in shadow, we stop work here.
Otherwise, we evaluate each pixel light visibility and if the entire Shadow Tile is fully lit, we
stop here. When partial shadow is detected, we ensure that a Visibility Slot is allocated, and
store the new decreased light visibility using the method presented in section 2.4.2.

Figure 10: Detection of character umbra volume in screen coordinates.

© SQUARE ENIX 20

1 ByteAddressBuffer tTileShadowSlotIds

2 ByteAddressBuffer tTileGroupLightMask;

3 ByteAddressBuffer tTileLightCountFinal;

4 RWByteAddressBuffer rw_TileLightListFinal;

5 RWByteAddressBuffer rw_TileLightVisibility;

6

7 // Work Unit outputs 1 Tile (8x8 pixels), each thread evaluates 1 pixel

8 [numthreads(SHADOWTILE_SIZE , SHADOWTILE_SIZE , 1)]

9 void CS_Phase5_HighQuality(uint inThreadIdx : SV_GroupIndex ,

10 uint2 inTileCoord : SV_GroupID ,

11 uint2 inPixelCoord : SV_DispatchThreadID

12)

13 {

14 const uint tileIdx = GetTileIndex(inTileCoord);

15 const uint tileGrpIdx = GetTileGroupIndex(inTileCoord);

16 const uint shadowSlotID = tTileShadowSlotIds.Load(tileIdx *4);

17 const uint lightCount = tTileLightCountFinal.Load(tileIdx *4);

18 const float depth = GetDepth(inPixelCoord);

19 const float3 worldPos = GetWorldPosFromScreen(inPixelCoord , depth);

20 const uint lightIdx = cCloseupInfo.m_LightIndex;

21 bool isValid = !IsFar(depth) &&

22 all(inPixelCoord < cCommon.m_Resolution);

23 // --

24 // Stop work when light not detected in TileGroup ’s LightMask

25 if(lightcount > 0 && TestTileGroupLightMask(tileGrpIdx , lightIdx))

26 return;

27 // Stop Tile work when pixel is not Closeup

28 isValid &= cCloseupInfo.IsInside(worldPos) &&

29 cCloseupInfo.IsValidShadowmapUV(worldPos);

30 if(WaveActiveAllTrue (! isValid))

31 return;

32

33 // --

34 // Leverage 64 threads to quickly find entry list with light index

35 uint vizSlotID = SLOTID_ALL_UNLIT;

36 uint entryIdx = 0xFFFFFFFF;

37 for(uint i=inThreadIdx; i<lightcount; i += GROUP_THREAD_COUNT){

38 uint2 lightIdx_VizSlot = GetLightListFinalEntry(shadowSlotID , i);

39 if(lightIdx_VizSlot.x == lightIdx){

40 entryIdx = i;

41 vizSlotID = lightIdx_VizSlot.y;

42 }

43 }

44

45 // Stop work when light is not found in this Tile

46 entryIdx = WaveActiveMin(entryIdx);

47 vizSlotID = WaveActiveMin(vizSlotID);

48 if(entryIdx == 0xFFFFFFFF)

49 return;

50

51 // --

52 // Update each Tile’s pixels light visibility

53 float viz = isValid ? ComputeLightVisibility(lightIdx , worldPos) : 0;

54 UpdateVisibility(entryIdx , shadowSlotID , vizSlotID , isValid , viz);

55 }

Listing 5: ’High Quality Shadows’ compute shader pseudo code (1/2)

© SQUARE ENIX 21

1 // Update light visibility in each pixels in the Tile

2 void UpdateVisibility(in uint inEntryIdx , in uint inShadowSlotID ,

3 in uint inVizSlotID , in bool inIsValid ,

4 in float inViz)

5 {

6 const bool isAllLit = WaveActiveAllTrue(inViz > 0.9999 || !inIsValid);

7 const bool isAllShadow = WaveActiveAllTrue(inViz < 0.0001 || !inIsValid);

8 const bool hasPenumbra = !isAllLit && !isAllShadow;

9 const uint lightIdx = cCloseupInfo.m_LightIndex;

10

11 // If Closeup is not fully lit , must evaluate new results

12 if(!isAllLit) {

13 // --

14 // Tile not 100% shadows , must update content

15 if(hasPenumbra) {

16 // --

17 // Makes sure a VisibilitySlot is allocated

18 float oldViz = 1;

19 if(inVizSlotID == SLOTID_ALL_LIT){

20 inVizSlotID = AllocateVisibilitySlotID ();

21 uint packedValue = PackLightIndexFinal(lightIdx , inVizSlotID);

22 uint outputAdr = GetListFinalAddress(inShadowSlotID , entryIdx);

23 rw_TileLightListFinal.Store(outputAdr , packedValue);

24 }

25 else{

26 oldViz = LoadVisibilitySlot(inThreadIdx , inVizSlotID);

27 }

28 // --

29 // Update Tile’s pixel visibility if any changed

30 if(WaveActiveAnyTrue(viz < oldViz && inIsValid)){

31 StoreVisibility(inVizSlotID , inThreadIdx , min(viz , oldViz));

32 }

33 }

34 // --

35 // Tile 100% in Shadow , mark the Light as unlit

36 else{

37 uint packedValue = PackLightIndexFinal(lightIdx , SLOTID_ALL_UNLIT);

38 uint outputAdr = GetListFinalAddress(shadowSlotID , entryIdx);

39 rw_TileLightListFinal.Store(outputAdr , packedValue);

40 }

41 }

42 }

Listing 6: ’High Quality Shadows’ compute shader pseudo code (2/2)

© SQUARE ENIX 22

3.5 Step: Standard Shadowmap Transfer

Each High-Quality Shadow is processed separately reusing the shared Closeup Shadowmap ren-
der target. This has the benefit of the computational cost being the only limiting factor since
the memory overhead is fixed. However, the Shadowmap’s content is discarded between each
character/light pair, making it unavailable to the forward renderer. Since characters with High-
Quality Shadows are not drawn in them, we transfer each Closeup Shadowmap result back into
the associated Standard Shadowmap.

This is achieved by projecting the Closeup Shadowmap’s near plane quad into the light Standard
Shadowmap coordinates. One Standard Shadowmap pixel contains many Closeup Shadowmap
pixels and reading each one would be prohibitively expensive (see figure 11). This high band-
width problem is solved by using a mipmapped version of the Closeup Shadowmap (see section
3.3), with each pixel selecting the mipmap level that needs two samples to cover the smallest
XY dimension of the area. We then iterate reading mipmapped Closeup Shadowmap values
until the entire area has been covered. For example, a pixel projecting to a 15 x 37 pixels area
in the Closeup Shadowmap, we select mipmap level 3.

MipLevel = Ceiling(log2(min(width, height)/2))

Figure 11: Transfer of a Closeup Shadowmap into the Standard Shadowmap of a light. Of
particular interest is how many pixels are projected into one, so mipmap should be relied on
to avoid a high memory bandwidth cost.

3.6 Results

Table 1 demonstrates that there are performance gains achieved by using Tiled Deferred Shadow
with figure 13 showing the cost distribution of our multi-phase approach. It also shows that
High-Quality Shadows comes at a cost with figure 14 showing the distribution over each step.
This can be managed by modulating the number of allowed character/light pairs. Some venues
left to explore for further reductions are resolving multiple High-Quality Shadows simultaneously
and issuing Standard Shadowmap drawcalls normally instead of transferring results to it (as
described in section 3.5).

© SQUARE ENIX 23

Figure 12: Scene used for performance measurement and averaging 3 shadow lights per tile.

Shadow Closeup Lighting Total ∆

No Deferred Shadows (before) 5.73 5.73
With Deferred Shadows 2.25 1.69 3.94 -1.79 -31%
Deferred Shadows + 8 Closeups 2.02 2.5 1.74 6.29 +0.56 +10%

Table 1: Deferred Shadows timing comparison on console (in ms). (Note: Closeups timing
includes rendering characters to Closeup Shadowmaps and resolving them).

Figure 13: Cost distribution of the Tiled Deferred Shadow phases.

Figure 14: Cost distribution of the High-Quality Shadow steps averaged over 8 items.

© SQUARE ENIX 24

(a)

(b)

Figure 15: Results of a character’s shadow without (15a) and with (15b) High-Quality Shadow.

© SQUARE ENIX 25

(a)

(b)

Figure 16: Visualization of light’s visibility without (16a) and with (16b) High-Quality Shadow.
Note: Since hair relies on Forward Lighting it cannot use Tiled Deferred Shadow and thus cannot
receive High-Quality Shadow, making them invisible in the visualization.

© SQUARE ENIX 26

4 Light leak reduction

The introduction of the Shadowmap technique transformed our approach to real time shadows
generation and is now used in most games but comes with a few issues (see ‘common techniques
to improve shadow depth maps’ [5]). The limited depth-value precision and discretisation of the
shadow view when stored in a texture introduces some self-shadow issues (commonly referenced
as shadow acne) where a surface erroneously casts some shadows over itself (see figure 17). This
needs to be mitigated and we introduce a novel approach named Oriented Depth Bias to replace
the traditional Hardware Depth Bias.

(a) Sand casting shadow over itself. (b) Scene with enough depth bias added.

Figure 17: Shadow acne issues.

(a) A flying chocobo!? (b) Shadows with proper depth bias amount.

Figure 18: Sample of Peter Panning shadow error.

© SQUARE ENIX 27

4.1 Hardware Depth Bias

To reduce the shadow acne, GPU allows offsetting the depth written out to the Shadowmap
render target using Depth Bias and Slope Bias settings. However, too high an offset introduces
a second visual issue called Peter Panning where an object seems to float over the ground
when its shadows start too far from itself (see figure 18). Handling this requires thicker meshes
and bias-value tweaking that is a fine balancing between the two problems. Complicating this
further is the non-linear aspect of the Shadowmap depth (See ‘Depth Precision Visualized’ [3]
by Nathan Reed), making it impossible to pick an appropriate bias value for all depth distances.
Figure 19 illustrates the issues behind the use of Hardware Depth Bias.

Figure 19: Hardware Depth Bias reduce erroneous self shadows but introduce Peter Panning
problems where a blocker is thinner than the depth bias (red areas). Despite specifying the
bias as a fixed value, we observe that it increases in range the further from the light it is, due
to the nonlinear nature of depth projection.

4.2 Oriented Depth Bias

I present a new simple technique solving these issues with little GPU overhead. Shadowmaps are
first generated without hardware depth bias to remain as close as possible to the real surface3.
We replace it with an orientation aware bias added to the tested depth before comparing it
with the associated Shadowmap value. When evaluating if a point is in shadow, we move it
toward or away from the light based on its face orientation. When facing the light, we want
to reduce shadow acne and move toward it, decreasing the odds of obstruction. When facing
away from the light, we want to reduce Peter Panning and move away from it, increasing the
odds of self-shadow. Figure 20 and listing 7 illustrate the logic of these two possibilities. This
solution lowered our depth bias used to 2 mm and produces reliable shadows on double-sided
polygons without thickness.

3However, we still rely on a Slope Bias value of 1 to handle grazing angle pixels.

© SQUARE ENIX 28

Figure 20: With Oriented Depth Bias, shadow acne and Peter Panning are eliminated by
using an orientation-aware depth bias in linear space. Shadowmaps are generated by storing
the first-encountered unbiased depth (yellow dots) from the light viewpoint. Next, each shaded
point (grey and yellow dots) is biased with a small linear depth value and tested against its
associated Shadowmap value. This bias moves the point toward the light when its normal is
facing it, and away from it otherwise.

We use a Subsurface Scattering (SSS) technique to simulate light entering a mesh from a surface
location, bouncing inside of it a few times, and exiting at a different location. When looking
toward an object in front of a light source, it lets out a diffuse coloration based on its interior tint.
It can be observed on thin fleshy parts, tree leaves, some plastic, and so on. SSS requires special
handling to remove self shadow that hinders the effect, and this can be achieved by omitting
the front face of meshes with SSS when drawing them in the Shadowmap. The Oriented Depth
Bias technique works too well in this case, creating shadows despite precautions. We remedy
this during shadow generation by tweaking the technique’s behaviour. When handling a pixel
with SSS enabled, we change the algorithm to always move toward the light, removing the
possibility of self shadows when combined with Shadowmap single-face drawing. In the case of
wanting to preserve front-face drawing into Shadowmap4 we modify the logic to using a higher
depth bias amount when moving toward the light.

4This could be to preserve mesh thickness when using Percentage Closer Filtering for example.

© SQUARE ENIX 29

1 float GetOrientedBias(in float3 faceNormal ,

2 in float3 lightDirection ,

3 in bool isSSS)

4 {

5 static float kOrientedBias = 0.2; // cm (could be a parameter)

6 float isFacingLight = dot(faceNormal , lightDirection) > 0;

7 bool moveTowardLight = isSSS || isFacingLight;

8 return moveTowardLight ? -kOrientedBias : kOrientedBias;

9 }

10

11 float3 GetLightDirection(in LightInfo lightInfo ,

12 in float3 worldPos)

13 {

14 return lightInfo.IsDirectional () ? lightInfo.LightDirection

15 : worldPos - lightInfo.WorldPos;

16 }

17

18 float ComputeShadows(in LightInfo lightInfo ,

19 in float3 worldPos ,

20 in float3 faceNormal ,

21 in bool isSSS)

22 {

23 float3 lightDir = GetLightDirection(lightInfo , worldPos);

24 float3 shadowmapCoord = WorldToShadowmapCoord(lightInfo , worldPos);

25 float linearDepth = DepthToViewZ(lightInfo , shadowmapCoord.z);

26 float linearBias = GetOrientedBias(faceNormal , lightDir , isSSS);

27 shadowmapCoord.z = ViewZToDepth(lightInfo , linearDepth+linearBias);

28 return PerformShadowmapTest(lightInfo , shadowmapCoord);

29 }

Listing 7: Shader code logic when applying Oriented Depth Bias to the shaded pixel

4.3 Results

Shadows ∆

Hardware Depth Bias (before) 3.98
Oriented Bias 4.17 +0.19 5%
Oriented Bias (extra GBuffer reads) 4.27 +0.32 8%

Table 2: Oriented Depth Bias timing comparison on console (in ms). The last row
measures time with extra GBuffer accesses for surface normal and SSS detection when
not already available to the shader.

© SQUARE ENIX 30

(a)

(b)

Figure 21: Visualisation of light’s visibility without (21a) and with (21a) Oriented Depth Bias.
Notice the missing shadow under the lace.

© SQUARE ENIX 31

5 Visualizers

Introducing multiple steps and indirection to shadow generation creates difficulties in the di-
agnostic of issues that will invariably arise during implementation. Therefore, having access
to a variety of debug visualizers becomes essential, giving detailed insight into each step and
preserving shader debugging capability with pixel picking in a GPU frame capture. The visu-
alizers are used both to display the results in real-time over the game and to output them to a
temporary render target for later analysis in a GPU frame capture.

Figure 22: Reference scene with light used in the following visualizer previews.

© SQUARE ENIX 32

5.1 Shadow

This is the most used visualizer and shows the shadow of a selected light. A first mode displays
the previously computed Tiled Deferred Shadow and a second mode re-evaluate the shadow
while entirely ignoring the light culling process. This last mode is particularly useful in debug-
ging the shadow generation algorithm (like PCSS) of a specific pixel in a GPU capture.

Figure 23: Visualizer: Tiled Deferred Shadow results.

5.2 Visibility Slot

This visualizer shows the number of Visibility Slots allocated per Shadow Tile and is helpful in
memory budget analysis.

Figure 24: Visualizer: number of Visibility Slots allocated per Shadow Tile.

© SQUARE ENIX 33

5.3 Light Culling

This visualizer previews the result of each light culling step, and which list a light is part of.
This is a valuable display helping with diagnostics since the generation of the two light lists
(Early Light List buffer and Final Light List Buffer) can encounter many issues. A useful
feature is the ability to detect a light erroneously culled by checking if any Shadow Tile’s pixels
are in range and confirming that the result agrees with the culling tests performed.

(a) Visualize last culling step successfully passed by a light.

(b) Visualize which light list a light belongs to.

Figure 25: Visualizer: Light culling results.

© SQUARE ENIX 34

5.4 Light Count

Useful to artists and programmers alike, this visualizer displays the number of lights detected
per Shadow Tile in various Tiled Deferred Shadow phases. Of particular use is the mode
displaying the light count difference between the approximation (section 2.2) and the accurate
(section 2.3) phases highlighting where it is weakest.

(a) Approximated number of lights detected.

(b) Number of lights found with more accurate tests.

(c) Difference between the approximated and the real light count.

Figure 26: Visualizer: Light count per Shadow Tile.

© SQUARE ENIX 35

6 Conclusion

We have implemented a Tiled Deferred Shadow system resulting in performance gains on stan-
dard shadows. It also allows support for characters’ High-Quality Shadow for an extra cost that
we manage by limiting their number based on the available budget. Next, I introduced our
Oriented Depth Bias technique for simple handling of Shadowmap self-shadow issues. Finally,
I presented our visualizers helping with Tiled Deferred Shadow issues diagnostics.

7 Acknowledgements

The development of any game of this magnitude requires the col-
laboration of a large number of dedicated individuals. I would
like to express my gratitude to Honda Kei for providing a solid
foundation of rendering code and knowledge on which I was able
to rely during developments. I would also like to thank Hideyuki
Kasuga for his management support, the Business Unit 3 team for
their trust in allowing me to explore new features, and the graphics
members of the Advanced Technology Division for their construc-
tive feedback on this document. Finally, I would like to thank
Louis-Philippe Sanschagrin for his valuable artistic feedback and
Heather Lee Mills for her document edits.

References

[1] W. Bart. Cull that cone! Improved cone/spotlight visibility tests for tiled and clustered
lighting. Apr. 2017. url: https://bartwronski.com/2017/04/13/cull-that-cone
(visited on 06/01/2023).

[2] Bo Li. “A Scalable Real-Time Many-Shadowed-Light Rendering System”. In: ACM SIG-
GRAPH 2019 Talks. SIGGRAPH ’19. Los Angeles, California: Association for Computing
Machinery, 2019. isbn: 9781450363174. doi: 10.1145/3306307.3328167. url: https:
//doi.org/10.1145/3306307.3328167.

[3] R. Nathan. Depth Precision Visualized. NVidia. July 2015. url: https://developer.
nvidia.com/content/depth-precision-visualized (visited on 06/02/2023).

[4] Ola Olsson, Markus Billeter, and Ulf Assarsson. “Clustered Deferred and Forward Shad-
ing”. In: Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-
Performance Graphics. EGGH-HPG’12. Paris, France: Eurographics Association, 2012,
87–96. isbn: 9783905674415.

[5] W. Steven et al. Common Techniques to Improve Shadow Depth Maps. Microsoft. Sept.
2020. url: https://learn.microsoft.com/en- us/windows/win32/dxtecharts/
common-techniques-to-improve-shadow-depth-maps (visited on 06/02/2023).

Glossary

Closeup Shadowmap

Shadowmap used with our High-Quality Shadow technique. Operates like a normal Shad-
owmap but with the view restricted to one object of interest rather than the entire light’s

© SQUARE ENIX 36

https://bartwronski.com/2017/04/13/cull-that-cone
https://doi.org/10.1145/3306307.3328167
https://doi.org/10.1145/3306307.3328167
https://doi.org/10.1145/3306307.3328167
https://developer.nvidia.com/content/depth-precision-visualized
https://developer.nvidia.com/content/depth-precision-visualized
https://learn.microsoft.com/en-us/windows/win32/dxtecharts/common-techniques-to-improve-shadow-depth-maps
https://learn.microsoft.com/en-us/windows/win32/dxtecharts/common-techniques-to-improve-shadow-depth-maps

field of view for better resolution precision.

Compute Work Unit

GPU speed comes from parallel execution of a series of instructions in lockstep with
multiple data. On console we have access to 64 threads running in parallel and are able
to quickly exchange data with each other.

Early Light List buffer

GPU buffer storing a list of valid lights per Shadow Tile. Lights are added to it when
there are pixels in range of the light without performing shadow tests (see figure 7a for
entry format).

Final Light List Buffer

GPU buffer storing a list of valid lights per Shadow Tile. Lights are added to it when
there are pixels in range of the light and excluded if the entire Tile is in shadow (see
figure 7b for entry format).

Froxel

Name given to Frustum Voxel which defines a sub-section of a Frustum using Tile coor-
dinates and a near/far depth position.

Hierarchical Depth Buffer

Special depth buffer used by GPU for acceleration. It has 1/8th of the paired depth buffer
resolution and contains the minimum and maximum depth of the associated 8x8 pixels.

High-Quality Shadow

Technique to draw higher quality shadow on specific objects (usually characters). Relies
on Closeup Shadowmaps focused solely on the object of interest.

Lane Operator

GPU instructions allowing fast data sharing between threads of a Compute Work Unit.

Light Group

Group of 32 contiguous lights. Used by Light Mask Entry to quickly discard groups
without any valid light, reducing processing time and memory read (see figure 4).

Light Mask Entry

Memory block of 132 bytes used to store the validity of 1024 lights and 32 Light Groups,
using 1 bit per entry (see figure 4).

Light SlotID

Used to calculate the starting location of a Tile’s light list inside a memory buffer. Iden-
tifier is valid for both the Early Light List buffer and the Final Light List Buffer.

© SQUARE ENIX 37

Oriented Depth Bias

New depth bias technique introduced in section 4.2 that applies an offset to the depth
tested using the face orientation.

Percentage Closer Soft Shadows

Shadow technique expanding the use of Shadowmap to allow soft shadow mimicking light’s
penumbra. The shadow becomes more diffuse as the geometry blocking the light increase
its distance from it.

Peter Panning

Artefact where object seems detached from its shadow because of a large depth bias
applied to the Shadowmap (see figure 18).

Shadow Tile

Tile used for processing Tiled Deferred Shadow. Our tiles are sized at 8x8 pixels to
account for the 64 threads Compute Work Unit size on console’s GPU.

Shadowmap

Texture storing the nearest depth as seen from the perspective of a light source. Used in
the most common shadow technique in real-time rendering.

Standard Shadowmap

Conventional Shadowmap used when generating the shadow of a light.

Tile

2D contiguous pixels grouped together for compute shader processing on the GPU.

Tile Group

2D contiguous Tiles grouped together for compute shader processing on the GPU. Used
in our approximation of lights per Tile search for faster results and in the Tile Group
Light Mask Buffer for reduced storage space. We use groups of 8x8 Tiles to account for
the 64 threads Compute Work Unit size on console’s GPU.

Tile Group Light Mask Buffer

GPU buffer storing the visibility of light in each Tile Group after the approximation phase
(see figure 4 for entry format).

Tile Light Mask Buffer

GPU buffer storing the visibility of lights in each Tile. Unlike our Shadow Tile of 8x8
pixels, these Tiles are 32x32 pixels to reduce the CPU workload when populating the
buffer (see figure 4 & 5).

© SQUARE ENIX 38

Tile Light SlotID Buffer

GPU buffer storing the Light SlotID of each Shadow Tile after assignment in the approx-
imation phase.

Tiled Deferred Lighting

Rendering technique separating lighting calculations from the surface material calculation.
This is done by storing the material parameters in intermediate textures called GBuffers
and processing the lighting in Tiles work units.

Tiled Deferred Shadow

Rendering technique expanding on Tiled Deferred Lighting by further removing the shadow
calculation from the lighting, then processing it in Shadow Tiles work units.

VGPR Pressure

Shaders need to reserve enough registers to accommodate the computational complexity
at its heaviest point. By lowering this number, we increase the number of Compute Work
Units waiting for execution. This helps hide memory access latency by switching to a
pending task when waiting for a memory load.

Visibility Slot

Memory block storing the visibility of one light for each pixel of a Shadow Tile. Use 8
bits per pixel to show gradient in the light penumbra.

Visibility SlotID

Used to calculate the starting location of a Tile light visibility content inside the Light
Visibility memory buffer.

VisibilityBuffer

GPU buffer storing the light visibility of each pixel of a Shadow Tile for a specific light.
When a light is fully lit or unlit, no entry is allocated in this buffer.

zBin

The Frustum is divided in 1024 uniform depth ranges creating zBins that store the first
and last light indices intersecting it (see figure 2a).

zBin (ranged)

Contains the first and last light indices intersecting a specific range of contiguous zBins
(see figure 2b).

zBin Buffer

GPU buffer storing entries of zBin and zBin (ranged).

© SQUARE ENIX 39

	Introduction
	Deferred Shadows
	Phase: Prepare
	Phase: Find Lights Approximate
	Phase: Find Lights Accurate
	Phase: Generate Deferred Shadows
	Phase: High Quality Shadows

	High Quality Shadow
	Step: Prepare
	Step: Closeup Shadowmap Draws
	Step: Closeup Shadowmap Resolve
	Step: Shadows Composition
	Step: Standard Shadowmap Transfer
	Results

	Light leak reduction
	Hardware Depth Bias
	Oriented Depth Bias
	Results

	Visualizers
	Shadow
	Visibility Slot
	Light Culling
	Light Count

	Conclusion
	Acknowledgements
	Glossary

