
ADAPTIVE RAY-BUNDLE TRACING
WITH MEMORY USAGE PREDICTION:
EFFICIENT GLOBAL ILLUMINATION IN LARGE SCENES

Yusuke Tokuyoshi
Takashi Sekine
Tiago da Silva
Takashi Kanai

(Square Enix Co., Ltd.)
(Square Enix Co., Ltd.)
(Square Enix Co., Ltd., Univ. of Tokyo)
(Univ. of Tokyo)

LIGHT MAPS FOR LARGE SCENES

45.3 M texel light maps
Scene with 4.9 km in diameter (3.7 M triangles)
Computation time: 1396 secs (2000 sample directions)
(GPU: NVIDIA GeForce GTX 580 1.5GB memory)

INTRODUCTION
1. Introduction

2. Adaptive Tiling for Ray-bundles

3. Experimental Results & Future Work

RAY-BUNDLE TRACING

 Set of parallel rays for a sample direction [Sbert96]

 Implemented with GPU rasterization [Szirmay-Kalos98, Hachisuka05]

 Benefits: HW acceleration, tessellation etc.

 Multi-fragment problem is identical to OIT
 Per-pixel linked-list [Yang10]

LIMITED MEMORY CAPACITY OF GPUS

 Uniformly distributed rays

 Inhomogeneous light map
density

 High-resolution ray-bundle buffer
is required

Memory overflow of the lists Light leaking error

 Memory usage is unknown
before rendering

 Excessive memory has to be
allocated

Ray-bundle tracing is weak in large scenes

UNIFORM TILING [THIBIEROZ11]

 Proposed for real-time linked-list OIT
 Split a render target into smaller tiled regions
 Each tile is rendered separately

 Unsuitable for off-line rendering
 Overflow is still unpredictable
 Scene-dependent parameter tuning

split

1 render target 8x8 render targets

OUR CONTRIBUTIONS

 Memory usage prediction for linked-list ray-bundles
 Adaptive tile subdivision using the above prediction

 Reduce the risk of memory overflow & light leaking error
 Avoid over-splitting
 Less parameter tuning

Uniform tiling Our adaptive tiling

ADAPTIVE TILING FOR RAY-BUNDLES
1. Introduction

2. Adaptive Tiling for Ray-bundles

3. Experimental Results & Future Work

ADAPTIVE TILING

 Based on adaptive shadow mapping [Fernando01]

 Quadtree-based tile subdivision
 According to a low-resolution scene analysis

 Analysis for memory usage prediction is also added
 The overflow risk is reduced dramatically

 It is not completely eliminated, however

Our contributions

IMPORTANCE & FRAGMENT COUNT ANALYSIS

 Render two mipmaps from the ray-bundle direction
 Pixels as quadtree nodes (resolution: 2n)

render

Importance mipmap Fragment count mipmap

(required ray density) (memory usage per ray)

RECURSIVE TILE SUBDIVISION

 Start from the top mip level (root of the quadtree)
 A tile is subdivided when overflow is predicted

Required ray-bundle pixel count Estimated upper bound

computed with
importance mipmap

computed with
fragment count mipmap

Subdivision condition
for each tile

EXPERIMENTAL RESULTS
& CONCLUSIONS
1. Introduction

2. Adaptive Tiling for Ray-bundles

3. Experimental Results & Future Work

NO TILING

100 secs
MSE: 2.0435e-2
overflow ratio: 0%

GPU: NVIDIA GeForce GTX 580 with 1.5GB memory

2000 sample directions
Ray-bundle resolution: 10242

Node buffer size: 5M nodes
Analysis resolution: 10242

Ground truth

35X35 UNIFORM TILING

1381 secs
MSE: 3.3344e-3
overflow ratio: 6.96%

GPU: NVIDIA GeForce GTX 580 with 1.5GB memory

2000 sample directions
Ray-bundle resolution: 10242

Node buffer size: 5M nodes
Analysis resolution: 10242

Ground truth

OUR ADAPTIVE TILING
(172.7 tiles / direction)

1396 secs
MSE: 2.5349e-4
overflow ratio: 1.27e-2%

2000 sample directions
Ray-bundle resolution: 10242

Node buffer size: 5M nodes
Analysis resolution: 10242

GPU: NVIDIA GeForce GTX 580 with 1.5GB memory

Ground truth

COMPUTATION TIMES PER SAMPLE DIRECTION

Analysis Rendering 7.9 13.3 2.4 7.5 12.5

Mipmapping 0.3 0.5 0.3 0.2 0.3

Tile Subdivision 0.3 0.2 0.3 0.4 0.4

GPU-CPU Data Copy 0.7 0.8 0.6 0.8 0.7

Ray-bundle Creation 291.6 405.7 69.9 269.8 418.9

Light Map Update 180.3 274.7 63.8 217.4 286.9

(ms)

2% overhead

GPU: NVIDIA GeForce GTX 580 with 1.5GB memory

CONCLUSIONS

 Adaptive tiling for linked-list ray-bundles
 A tiles is subdivided when overflow is predicted
 The risk of memory overflow is reduced dramatically
 Less parameter tuning

 Memory usage prediction
 Using the fragment count mipmap

 Demonstrated baking light maps of large scenes
 With a limited memory capacity

FUTURE WORK

 Improving the analysis accuracy
 Supersampling
 Conservative rasterization [Hasselgren05]

 Ray-bundle warping

 Rectilinear texture warping [Rosen12]

 Real-time linked-list OIT
 For an arbitrary node buffer size

Warping

THANK YOU

	Adaptive Ray-bundle Tracing�with Memory Usage Prediction:�Efficient Global Illumination in Large Scenes
	Light Maps for Large Scenes
	Introduction
	Ray-bundle Tracing
	Limited Memory Capacity of GPUs
	Uniform Tiling [Thibieroz11]
	Our Contributions
	Adaptive Tiling for Ray-bundles
	Adaptive Tiling
	Importance & Fragment Count Analysis
	Recursive Tile Subdivision
	Experimental Results�& Conclusions
	No Tiling
	35x35 Uniform Tiling
	Our Adaptive Tiling
	Computation Times per Sample Direction
	Conclusions
	Future Work
	Thank You

