Pacific Graphics 2013
B. Levy, X. Tong, and K. Yin
(Guest Editors)

Volume 32 (2013), Number 7

Adaptive Ray-bundle Tracing with Memory Usage
Prediction: Efficient Global Illumination in Large Scenes

Yusuke Tokuyoshil, Takashi Sekinel, Tiago da Silval’z, and Takashi Kanai?

lSquare Enix Co., Ltd., Japan
2University of Tokyo, Japan

Figure 1: Indirect illumination represented by 45.3M texel light maps for a large outdoor scene (4.9 km in diameter, 3.7M
triangles). The texel distribution of these light maps is strongly inhomogeneous and locally dense. Light map computation time
with our method: 1396 secs (GPU: NVIDIA® GeForce® GTX 580).

Abstract

This paper proposes an adaptive rendering technique for ray-bundle tracing. Ray-bundle tracing can be done by
per-pixel linked-list construction on a GPU rasterization pipeline. This rasterization based approach offers sig-
nificant benefits for the efficient generation of light maps (e.g., hardware acceleration, tessellation, and recycling
of shaders used in real-time graphics). However, it is inapplicable to large and complex scenes due to the limited
capacity of the GPU memory because it requires a high-resolution frame buffer and high-capacity node buffer
for the linked-lists. In addition, memory overflow can potentially occur on the per-pixel linked-list since the mem-
ory usage of the lists is usually unknown before the rendering process. We introduce an adaptive tiling technique
with memory usage prediction. Our method uses an appropriately tiled frame buffer, thus eliminating almost all
of the overflow risks thanks to our adaptive tile subdivision scheme. Using this technique, we are able to render
high-quality light maps of large and complex scenes which cannot be computed using previous ray-bundle based
methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity

1. Introduction

Global illumination effects are perceptually important for in-
teractive applications such as video games and virtual real-
ity systems. While many dynamic global illumination meth-
ods have been developed, cheap static solutions such as light

(© 2013 The Author(s)
Computer Graphics Forum (©) 2013 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

maps are often still required, especially for vast background
objects as shown in Fig. 1 for which global illumination is
difficult to compute in real-time frame rates. However, bak-
ing light maps (storing precomputed irradiance into texture
maps) is also computationally expensive, given the necessity
to solve difficult illumination problems for an entire scene.

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

—

Figure 2: Focusing on a single global direction, a set of par-
allel rays can be used instead of shooting random rays from
different positions.

Figure 3: Our adaptive tiling (b) produces more efficient re-
sults than uniform tiling (a) (Brightness represents impor-
tance, described in Sect. 3). Tiles are subdivided taking into
account not only importance, but also the predicted memory
usage of the per-pixel linked-list to reduce the risk of mem-
ory overflow.

Ray-bundle tracing is an acceleration technique leverag-
ing a GPU rasterizer [SKP98, Hac05]. Via ray-bundle trac-
ing, light maps can be efficiently generated [HHGMI0,
TSO11] by repeatedly rendering the scene from sample di-
rections using a parallel projection, similar to rendering a
shadow map from a directional light source (Fig. 2). Mul-
tiple depth fragments in a single pixel can be handled by
a per-pixel linked-list [Car84, YHGT10, TSO11]. Although
fast GPU ray tracers such as NVIDIA OptiX™ [PBD*10]
are currently available, this rasterization-based approach al-
lows easy reuse of techniques developed for real-time graph-
ics, such as hardware tessellation with arbitrary displace-
ments. Although this feature is suitable for baking light maps
of real-time applications, a huge amount of memory is con-
sumed especially for large and complex scenes.

Light map texel distribution is often strongly inhomoge-
neous for practical scenes because they are generally given
by artists. In order to capture high-density light map texels
for a scene, it has to be rendered using a high-resolution
ray-bundle buffer. Moreover, for complex scenes, a high-
capacity node buffer for the linked-lists is also necessary to
store many depth fragments. In addition, the memory usage
of such linked-lists is usually unknown before the render-
ing process. Hence, an excessive amount of memory has to
be allocated to avoid overflow. In other words, avoidance of
memory overflow given an arbitrary memory capacity is a
challenging problem.

Memory reduction for per-pixel linked-list can be ad-
dressed by tiling. This multi-pass rendering technique splits

a render target into smaller tiled regions as shown in Fig. 3.
Uniform tiling (Fig. 3 (a)) [Thil1] was introduced for real-
time order independent transparency (OIT), but its actual
memory usage is still unpredictable. Furthermore, rendering
with many tiles causes speed degradation. Since appropri-
ate parameters (e.g., number of tiles, resolution for each tile,
and buffer size) are strongly scene-dependent, they have to
be chosen through trial and error, which is unsuitable for off-
line light map computation. Moreover, uniformly distributed
rays are inefficient for inhomogeneous light maps.

This paper proposes an adaptive tiling technique (Fig. 3
(b)) which takes into account the memory usage for oft-line
rendering. With our method, only the resolution for scene
analysis and maximum buffer size for the per-pixel linked-
list are specified. Based on the buffer size and light map den-
sities, tiles are subdivided adaptively. Furthermore, the ap-
propriate ray-bundle resolution for each tile is automatically
determined. This subdivision scheme does not only adapt
the ray-bundle resolution to the light map density, but also
almost completely eliminates the memory overflow risks,
since tiles are subdivided when overflow is predicted. Our
method thus efficiently produces higher-quality images with
less parameter tuning than uniform tiling.

The contributions of this paper are as follows:

e A memory usage estimator for linked-list based ray-
bundles is introduced to reduce the memory overflow risk.

e Adaptive tile subdivision using the above estimator is
demonstrated. As far as we know, this is the first demon-
stration of the adaptive solution for the resolution issue in
ray-bundle based global illumination algorithms.

2. Related Work

Path tracing [Kaj86] is a well-established technique based on
Monte Carlo integration to calculate indirect illumination. It
is done by evaluating a hemispherical integral via recursive
ray tracing. On the other hand, ray-bundles, which are a set
of parallel rays, are used for the efficient implementation of
approximate ray tracing. This method focuses on a single
global direction, and computes visibility for all fragments
in a scene in parallel as shown in Fig. 2. The use of global
ray-bundles was first introduced by Sbert [Sbe96] to com-
pute radiosity. Recently, they are often used for accelerating
visibility tests, because they can be implemented using GPU
rasterization.

Szirmay-Kalos and Purgathofer [SKP98] proposed
hardware-assisted ray-bundle tracing for a finite element
based global illumination algorithm, but like OIT, it was
difficult to render complex objects such as intersecting
triangles. In other wards, this problem can be solved by
using techniques developed for OIT. Hachisuka [HacOS5]
introduced the complete GPU ray-bundle tracing for final
gathering. To obtain each depth fragment, a multi-pass
method called depth peeling [Eve01] was used. Baking light

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

maps using this method was also demonstrated [Hac02].
Hermes et al. [HHGM10] used a k-buffer [CICS05] as an
alternative to depth peeling. High-quality multiple glossy
interreflections were achieved due to the use of texture at-
lases as intermediate data structures. Although the k-buffer
can be created in a single-pass, the number of fragments per
pixel is fixed. Stochastic depth buffering for approximate
radiosity [TN11] is more simply processed in a single pass,
but it often induces light leaking artifacts.

Our ray-bundle tracing method is based on a per-pixel
linked-list [Car84] on a DirectX®11 GPU [YHGT10]. This
single-pass linked-list construction is faster than depth peel-
ing, and provides unlimited storage per pixel unlike the k-
buffer. Tokuyoshi et al. [TSO11] computed light maps us-
ing this ray-bundle tracing method. Furthermore, by lever-
aging GPU tessellation, they inexpensively generated light
maps of highly tessellated objects. These linked-list based
ray-bundles can also be employed for interactive global il-
lumination. NieBner et al. [NSS10] developed a semi-static
method based on pre-computing layered depth images (i.e.,
per-pixel linked-list) from every direction for a static ob-
ject. A completely dynamic approach was demonstrated by
Tokuyoshi and Ogaki [TO12b]. They introduced bidirec-
tional sampling combining virtual point lights and a few
dynamic ray-bundles at interactive frame rates. To generate
many ray-bundles in a single-pass, an approximation tech-
nique called imperfect ray-bundle tracing [TO12a] was also
proposed.

However, ray-bundle tracing via GPU rasterization has
critical limitations. Details of large scenes cannot be ren-
dered due to uniformly distributed rays with limited resolu-
tion. In this case, details finer than the pixel size are missed
and light leaking is often produced. In addition, memory
overflow can potentially occur in linked-lists used for ray-
bundle tracing.

Since the resolution issue is identical to the aliasing prob-
lem of shadow mapping, it can be solved using anti-aliasing
methods developed for shadow maps. Perspective shadow
maps [SD02, WSP04,MT04,LGQ*08] and cascaded shadow
maps (CSMs) [Eng06, LTYMO06, ZSXL06] have been de-
veloped to adapt the sampling rate to a view frustum for
real-time applications. More robust approaches are done
by analyzing the scene before creating the shadow map.
Lauritzen et al. [LSL11] analyzed the depth distribution in
a G-buffer for CSMs. Adaptive shadow mapping (ASM)
[FFBGO1,LSK*05,L.S007,GW07a, GW07b] is more robust
than view frustum based approaches. It builds a quadtree
which samples the scene at multiple resolutions based on
an analysis of the scene. Tiled shadow mapping [Arv04] is
one type of ASM approach using a uniform tile grid. Instead
of quadtree-based adaptation, each tile has a different resolu-
tion. Such ASMs are generally rendered in a multi-pass fash-
ion. Recently, Rosen [Ros12] proposed rectilinear texture
warping shadow maps (RTWSMs). Instead of multi-pass

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

rendering, a simple warping technique is applied to control
the sampling rate. Several scene analysis techniques, namely
forward analysis, backward analysis, and hybrid analysis
were introduced. In this context, the forward and backward
methods analyze scenes from the light view or desired view
respectively, while the hybrid approach combines both. This
paper demonstrates the adaptive ray-bundle tracing based on
ASM to solve the resolution issue.

However, memory overflow of the per-pixel linked-list
is still an open problem [VF13]. To solve this, Thibieroz
[Thil1] reduced memory usage via uniform tiling for real-
time OIT, but overflow was still unpredictable. Vasilakis
and Fudos [VF12] proposed an S-buffer which linearly or-
ganized memory into variable contiguous regions for each
pixel with a two-pass rendering. Even though this pointer-
less structure is memory efficient, the memory had to be re-
allocated when overflow occurred. Our main contribution is
an efficient memory usage prediction for adaptive tiling.

3. Scene Analysis

For shadow mapping, the analysis of importance distribution
on a scene is in general used to select the sampling rate. For
ray-bundles, our method additionally counts the depth frag-
ments to potentially reduce the risk of memory overflow for
the per-pixel linked-lists.

Importance Function for Light Maps In this paper, ray-
bundles are adaptively generated according to an importance
value which represents the required ray density on a surface.
For baking light maps, we define the importance as light map
texel density, which is independent of sample direction. In
fact, the given texel density viewed from any sample direc-
tion is proportional to ﬁ, where 0 is the angle between
the sample direction and surface normal. However, since
the incident radiance is weighted by cos© in the rendering
equation [Kaj86], we also weight the importance function
by cos 0 for efficiency, similar to the importance sampling of
lambertian surfaces. Finally, from %:g = 1, the importance
function is given as only the light map texel density viewed
from the surface normal direction. In this paper, since im-
portance is constant in a triangle primitive, it is precomputed
and stored into each triangle for acceleration. This precom-
putation is described in the supplemental material.

Analysis for Memory Usage Prediction Unlike shadow
maps, linked-list based ray-bundles have the risk of mem-
ory overflow. To avoid this overflow, we predict the memory
used and set appropriate parameters before creating the ray-
bundles. In our analysis, a number of depth fragment counts
viewed from a ray-bundle direction is first sampled. The av-
erage of these samples is then estimated, being used to cal-
culate the maximum ray-bundle resolution which does not
induce memory overflow. Next, our adaptive approach de-
termines the ray-bundle sampling rate based on this estima-

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

Sample New Global Direction

EEL."

Importance Maximum Mipmap

Fragment Count Mipmap

Create Local Ray-Bundle Update Light Maps

» |

for each tile

Scene Analysis

Tile Subdivision

result

Light Transport

Figure 4: Our adaptive ray-bundle tracing algorithm for light map baking. The scene analysis phase renders the importance
map and fragment count map, and generates their mipmaps. Next, the tile subdivision phase adaptively subdivides the tiles
using the mipmaps. Finally, for each tile, a local ray-bundle is created, and light maps are updated.

tion, unlike deterministic methods such as the S-buffer. Con-
versely, it means the sampling points of the analysis most
often differ from the generated ray-bundle. Our approach
therefore still potentially has the risk of memory overflow
due to prediction error, but this risk can be more dramatically
reduced than without the prediction. To reduce the overflow
risk even further, a prediction metric is introduced in Sect.
4.3.

4. Adaptive Tiling for Ray-bundles

In this section, an adaptive tiling method for ray-bundle trac-
ing is introduced based on ASM. As shown in Fig. 4, our al-
gorithm is composed of the following three phases: scene
analysis phase, tile subdivision phase, and light transport
phase. Our contribution consists of the scene analysis and
tile subdivision. The scene analysis builds two 2D mipmaps
called importance map and fragment count map. The im-
portance map represents the required ray density similar to
RTWSM. Unlike shadow mapping, the fragment count map
is additionally introduced, storing a per-pixel fragment count
used to predict memory usage. These maps are built per sam-
ple direction by rendering the entire scene viewed from that
direction. In the tile subdivision phase, tiles are recursively
subdivided by descending the mipmaps and taking mem-
ory usage into account. Finally, for each tile, a local ray-
bundle is generated, and light maps are updated by comput-
ing the light transport as described in [HHGM10, TSO11].
For large scenes, the importance map and fragment count
map are often given lower resolution than the generated tiled
ray-bundles, but they are sufficient for our tile subdivision
scheme.

4.1. Building the Importance Map

An importance map is built by rendering the entire scene
using the same parallel projection as the global ray-bundle,
similar to the forward analysis in RTWSM. The pixel shader
then stores an importance value (i.e., light map density) in
the importance map. To take into account multiple depth
fragments in a single pixel, the maximum value is stored

by using an atomic instruction, unlike the original forward
analysis. Once the importance map is rendered, its maximum
mipmap [GWO07a, TISO8] is generated. This mipmap is built
up by computing the maximum value of the four underlying
samples. To build a quadtree implicitly, our importance map
resolution is given as a power of two. After that, we adap-
tively subdivide tiles according to this mipmap, and com-
pute the required ray-bundle resolution for each tile from the
mipmapped value. We use maximum mipmapping to capture
locally dense importance distribution in a tile.

4.2. Building the Fragment Count Map

A fragment count map can be rendered in the same render-
ing pass as the importance analysis described in Sect. 4.1.
The pixel shader then stores a layered fragment count in the
fragment count map, which has the same resolution as the
importance map. The fragment count is incremented with an
atomic instruction. Similar to the importance analysis, once
the fragment count map is rendered, its mipmap is gener-
ated. Unlike the importance map, this mipmapping is done
via a general averaging operation such as the GenerateMips
function in Direct3D®). Using this mipmap, the averaged
fragment count for each tile is estimated for memory usage
prediction.

4.3. Tile Subdivision Based on Prediction

This subsection describes our tile subdivision scheme based
on the importance map and fragment count map. The ray-
bundle resolution required for a tile is determined using the
importance map; the fragment count map is used to estimate
the upper bound of the resolution limited by the buffer size.
If the required ray-bundle resolution is greater than the upper
bound, the tile is subdivided in a recursive fashion.

First, we compute the required ray-bundle resolution for a
tile. Let i be the mip level and x be the pixel position corre-
sponding to a tile, then the number of required rays for tile
Ci(i,x) is given by computing the product of the tile area
A(i) and importance I(i,x) as follows:

C](i,X) :A(i)l(i7x), (D

(© 2013 The Author(s)

Computer Graphics Forum (© 2013 The Eurographics Association and John Wiley & Sons Ltd

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

est;,

Matj,
her, el
Tdtp,

mip level 4 (256 samples) higher bias lower variance

mip level 3 (64 samples)
mip level 2 (16 samles,
mip level 1 (4 samples)

mip level 0 (1 sample) lower bias higher variance

Figure 5: Kernel based fragment count estimation using
mipmaps. A pixel of a low mip level has high variance
caused by undersampling, while the upper level has lower
variance with higher bias due to wider kernel bandwidth.
Since these are different errors, the upper bound of memory
usage can be predicted by considering the maximum error
for the pixel.

since the importance /(i,x) obtained from the importance
map represents the required ray density. Assuming a square
resolution, the required ray-bundle width is 1/Cj (i,x) pixels.

Next, we compute the upper bound of the ray-bundle res-
olution. The per-pixel linked-list structure has a head pointer
buffer and a node buffer. Let W? be the maximum head
pointer buffer resolution and N be the node buffer size, then
the upper bound of the ray-bundle pixel count can be given
by:

Cinax(i,X) = min (Wz, F(&NX)) , 2)
where F(i,x) is the estimated fragment count per pixel, and
o = [0,1] is the user-specified parameter to avoid memory
overflow. In this paper, o = 0.9 is used in the expectation that
the estimation error is less than 10%. The estimated frag-
ment count F(i,x) can be directly obtained from the frag-
ment count map. This estimation is reasonable for large tiles
corresponding to the upper mip level, but it induces high
prediction error for small tiles because a pixel of the lower
mip level has higher variance caused by undersampling. As
shown in Fig. 5, our mipmapping based fragment count es-
timation is a kernel based estimation. There are several es-
timates due to different kernel widths. The estimation using
only pixel (i,x) is unbiased and often produces high vari-
ance, whereas the upper level has lower variance with higher
bias due to wider kernel bandwidth. Therefore, to reduce
overflow risk, Eq. 2 is extended by computing the minimum
of the estimated pixel counts above the current level i as:

Crmax(i,X) = min (W2,r}1[ill) (FZNX))) N)

where L is the number of the mipmap levels.

If C;(i,x) > Cmax(i,X), the tile is recursively subdivided
because memory overflow is predicted. This subdivision
scheme allows less parameter tuning, since only buffer sizes
W, N, and L are actually specified depending on the hard-

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

ware used. Tiles are adaptively subdivided according to the
complexity of the input scene. The ray-bundle resolution for
each tile is determined by Eq. 1.

5. Experimental Results

In the following, we show results rendered on an NVIDIA
GeForce GTX 580 with 1.5GB memory. The maximum size
of the head pointer buffer and node buffer are 10242 pixels
and 5M nodes respectively. The resolution of the importance
map and fragment count map is 10242 pixels. The imple-
mentation details are described in Appendix A and the sup-
plemental material.

Quality Fig. 6 shows the comparison of light leak errors us-
ing the mean squared error (MSE) metric in light map space.
The ray-bundle resolution for each tile is the same as the
maximum resolution of the head pointer buffer for no tiling
(a) and uniform tiling (b), while our method (c) uses only
the required resolution given by Eq. 1. The overflow ratio
is the ratio of the overflowed node count to the total node
count. Computations sufficiently converge with 2000 sam-
ple directions for these scenes. Since a ray-bundle without
tiling (a) is low-resolution, it cannot render illumination de-
tails. Uniform tiling (b) can reduce error by increasing reso-
lution, but there are still noticeable light leaks. Furthermore,
uniform tiling often causes memory overflow, which in turn
causes visibility of locally-complex objects to be neglected,
resulting in additional light leak errors, as shown in the bot-
tom image of Fig. 6 (2)(b). Our method (c) significantly
reduces overflow and light leak errors, producing higher-
quality images with low-resolution analysis. The light leak
error caused by the ray-bundle resolution cannot be removed
completely, but it can be reduced without limit by tiling. Al-
though there is still some overflow in the resulting images, it
is in fact hardly detectable due to our efficient adaptive tiling.
With uniform tiling, overflow is always produced in the same
local area such as Fig. 6 (2)(b) bottom. On the other hand,
with our adaptive tiling, overflow is stochastically produced,
being caused by prediction error. Consequently, unlike uni-
form tiling, errors can be dispersed.

Performance Table 1 shows the computation time of each
procedure in Figs. 6 and 7. The overhead of our method (i.e.,
the total of Analysis Rendering, Mipmapping, Tile Subdi-
vision and GPU-CPU Data Copy) is about 2% of the total.
The computation time of our parallel tile subdivision is about
0.3 ms, while the data transfer time is about 0.7 ms. The to-
tal computation time per direction depends on the light map
density and scene complexity, since tiles are adaptively sub-
divided according to them.

Parameters Fig. 8 shows the computation time per sam-
ple direction for the scenes shown in Fig. 7 with different
maximum head pointer buffer resolutions and node buffer
sizes. Since the computation time strongly depends on the

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

(a) no tiling (b) 2323 uniform tiling (c) our adaptive tiling
960 secs

172.7 tiles / direction

(d) ground truth

MSE: 1.3255e-3
overflow ratio: 0%

MSE: 1.8139¢e-4
overflow ratio: 1.71%

MSE: 2.4519e-5
overflow ratio: 3.98e-6%

(1) 27.3M texel light maps, 0.99 km in diameter, and 2.7M triangles scene.
The lower images are close-ups of the upper ones.

(a) no tiling (b) 35x%35 uniform tiling (c) our adaptive tiling
1381 secs 1396 secs

211.6 tiles¢/direction

(d) ground truth

e ST hl) lame T . N T
(2) The same scene as Fig. 1 (45.3M texel light maps, 4.9km in diameter and 3.7M triangles).
The middle and bottom images are close-ups of the top ones.

Figure 6: Comparison of light leaks (indirect illumination only). All images are rendered with 2000 sample directions. The tile
count of uniform tiling (b) is determined with reference to the same computation time as our adaptive tiling (c). No tiling (a)
cannot render the illumination details due to the low-resolution ray-bundles. Uniform tiling (b) often induces memory overflows
and light leaks because of locally-complex objects as shown in the bottom image. Our adaptive method (c) produces a closer
image to the ground truth and reduces overflow risk.

(© 2013 The Author(s)
Computer Graphics Forum (© 2013 The Eurographics Association and John Wiley & Sons Ltd

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

275 secs (2000 samples)
63.6 tiles / direction

991 secs (2000 samples)
135.3 tiles / direction

2940 secs (4000 samples)
166.4 tiles / direction

overflow ratiox 1.16€-5%
(c) 47M texel light maps
0.19 km in diameter, 4.5M triangle

overflow ratio: 3.89e-3%

(b) 32 M texel light maps
0.71 km in diameter, 1.1M triangles

overflow ratio: 0%
(a) 14M texel light maps
0.23 km in diameter, 0.33M triangles

Figure 7: Experimental scenes (indirect illumination only). The indirect illumination is represented using light maps. The left
image (a) is a semi-outdoor scene which has lower resolution light maps and fewer polygons than the other scenes. The middle
image (b) is an outdoor scene which has complex objects illuminated by an environment map. The right image (c) is an indoor
scene which has a difficult illumination problem since there are many spot lights and small holes. Scenes (a) and (b) were
computed with 2000 sample directions, while scene (c) was computed with 4000 sample directions due to illumination difficulty.

Table 1: Computation time per sample direction (ms).

Fig.6 (1) Fig.6(2) Fig.7(a) Fig.7(®) Fig.7(c)
Analysis Rendering 79 133 2.4 75 125
Mipmapping 0.3 0.5 0.3 0.2 0.3
Tile Subdivision 0.3 0.2 0.3 0.4 0.4
GPU-CPU Data Copy 0.7 0.8 0.6 0.8 0.7
Ray-bundle Creation 291.6 405.7 69.9 269.8 4189
Light Map Update 180.3 2747 63.8 2174 2869

tile count, the upper bound resolution given by Eq. 3 should
be relaxed. Given that such upper bound is calculated based
on both parameters, they both should be increased in order
to accelerate the computation. We have also remarked that
the computation time slightly increases when the parame-
ters are excessively large. This is because our method em-
ploys importance maximum mipmapping to capture locally
dense texel distribution, which induces oversampling. The
overflow ratio behaves differently regarding these two pa-
rameters as shown in Fig. 9. A high-resolution head pointer
buffer increases overflow, while a high-capacity node buffer
reduces it. Hence, the node buffer size should be increased
in proportion to the maximum head pointer buffer resolution
within the available memory capacity.

6. Limitations

Memory Overflow Memory overflow is dramatically re-
duced by using our method, but it cannot be avoided com-
pletely. A possible approach to avoid overflow completely
should be to subdivide a tile on the CPU and then recompute
the ray-bundles when overflow occurs. To check for over-
flow, the counter value of the node buffer has to be copied
from GPU memory to CPU memory for non-unified memory
architectures. This recomputation overhead is approximately
6% in our implementation. However, the quality difference is
negligible for practical use, as shown in Fig. 10, because the

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

3(secs) 3(59C5)

——Fig.7(a) ~——Fig.7(a)

——Fig.7(b) ——Fig.7(b)

25 T\ Fig.7(c) 25 Fig.7(c)
2 2
1.5 15

1 \¥ 1 +—=
0.5 0.5

——
¥ R ——mmd
0 T T T T] 0 T T
= N « = N = ~ a [~
8 &8 8 B B B ¢ < & ¢
9 N - R& £ Fd < <

head pointer buffer size node buffer size

Figure 8: Computation time per sample direction of the
scenes shown in Fig. 7 with different maximum head pointer
buffer resolutions (left) and different node buffer sizes
(right).

0.006% +————{——Fig.7@@)} 0.006% ——Fig.7(a)
5 —— Fig.7(b) ! . ——Fig.7(b)
0.005% | Fig.7(c)f ~ 0:005% Fig.7(c)

0.004% ﬁé 0.004% \\ A
0.003% / 0.003% \ / \
0.002% 0.002% \"4

0.001%

0.001%

///

0.000% — 0.000% - s—— —

s AL
1 ™

20T
8v0C

= N
N I
0, o))

NOT
[A[4

N)
o <
<

3

WSZ'T

head pointer buffer size node buffer size

Figure 9: Overflow ratio of the scenes shown in Fig. 7 with
different parameters. Increasing the head pointer buffer size
increases overflow, while high-capacity node buffer reduces
it.

generated light maps are often converted to lower-precision

ones for interactive applications.

Analysis With our method, importance maps are rendered
in a forward analysis fashion. Using hybrid analysis, conser-

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

4896 secs

(a) w/o recomputation (b) with recomputation
Figure 10: Memory overflow can be completely avoided
by subdividing the tile and re-creates the ray-bundles when
overflow occurs. However, the quality difference is indis-
tinguishable, whereas the recomputation overhead is about
6%.

Table 2: False alarm ratio (the unnecessary split count / the
total split count) and overflow ratio.

a=09 oa=1.0
false alarm ratio: 34.3% 20.2%
overflow ratio: 3.98e-6% 8.81e-3%
false alarm ratio: 35.3% 21.9%
1.27e-2% 3.25e¢-2%

Fig. 6 (1)

Fig. 6 (2
ig. 6.)overﬂow ratio:

vative importance distribution can be produced. Since back-
ward analysis is suitable for deferred shading, it can be faster
than forward analysis for real-time applications. However,
for light map computation of large scenes, the use of back-
ward analysis is inefficient due to high-resolution light maps,
and induces more memory access conflicts with atomic op-
erations. For our scene shown in Fig. 1, backward analysis
time was 793 ms whereas forward analysis time was 13.3
ms. Hence, we employed only forward analysis, which has
the side-effect of possibly missing scene details, excluding
them from the importance map. However, this is not a big
problem for our mipmap based tiling technique, since all de-
tails are collapsed.

False Alarms As shown in Table 2, our overflow prediction
has a trade-off between false alarms and memory overflow.
These false alarms little affect image quality, but they in-
crease tile count and reduce computation efficiency. False
alarm reduction is our future work for acceleration.

7. Discussions

Ray-bundle Warping Our adaptive tiling method can pro-
duce many tiles and oversampled areas due to the impor-
tance maximum mipmap. These redundant computations can
be reduced with warping [Ros12], if the GPU has a fast
tessellator. Instead of maximum mipmapping, general av-
erage mipmapping is applied to reduce the tile count. The
ray distribution of the local ray-bundle can be adapted to
the importance distribution by warping with tessellation, as
shown in Fig. 11. However, the challenging problem is pre-
dicting memory usage for warped ray-bundles. The fragment

importance map

Fl
1l .
]

Figure 11: RTW ray-bundle tracing for a single tile. The
ray-bundle can be warped according to the importance map
with GPU tessellation.

count estimation must be modified. Assuming an ideal warp-
ing whose pixel size is proportional to its importance, the
warped fragment count per pixel £ (i,x) can be estimated by
computing a weighted average as follows:

Y(0y)e(ix) F0,y)1(0.y) _ Fu(ix)
Yoy)eix1(0.y) 1(i,x) ’

where F,(0,x) = F(0,x)/(0,x) and F,(i,X) is obtained via
mipmapping. Although available warping techniques such
as RTW are only approximations and, therefore may not
be ideal, they can be applicable if sufficiently accurate for
our purposes. However, since the warping quality depends
on analysis accuracy, details of the importance map should
be rendered unlike in the maximum mipmapping strategy
which collapse details. As mentioned in Sect. 6, hybrid anal-
ysis can render details, but it is computationally expensive
for light map computation. We believe warping for each tile
is a better solution, when a fast tessellator and efficient anal-
ysis methods are available.

Fi,x) =)

Improving the Analysis Accuracy The analysis accuracy
can be improved by increasing the resolution of the impor-
tance map and fragment count map, but it is memory ineffi-
cient for our mipmap based tiling. To improve the accuracy
keeping the resolution, supersampling can be used. Since our
analysis uses atomic maximum and increment operations,
supersampling without additional storage cost can be per-
formed with more memory access conflicts. However, su-
persampling can still miss fragments for small triangles. To
avoid it, conservative rasterization [HAMOOS5] can be used
for the importance map. This conservative rasterization can
be done with a geometry shader for current GPUs. Such su-
persampling and conservative rasterization should be con-
sidered for larger scenes.

Data Compression for Analysis Our current importance
and fragment count map size is 32 bits per pixel, as atomic
instructions are restricted to 32 bits in DirectX 11.2 or
OpenGL([®)4.4, but 16 bits per pixel is sufficient for a reliable
analysis. 16 bits atomic operations can be emulated using a
loop and compare-and-swap instruction, similar to the emu-
lations described in [CG12]. In the future, we would like to
implement these and evaluate their performance.

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

Other Applications This paper demonstrated a light map
computation method using adaptive ray-bundle tracing. Our
adaptive tiling is also applicable for other ray-bundle based
applications such as final gathering [Hac05], ambient occlu-
sion, and interactive global illumination [NSS10, TO12b].
If a scene is rendered from a camera view, an efficient
backward analysis method and the importance functions de-
scribed in [Ros12] can be used. As previously mentioned,
an importance map should be generated by hybrid analysis
for reliable ray-bundle warping. Real-time OIT using per-
pixel linked-list is another application. Our adaptive tiling
can avoid memory overflow for an arbitrary memory capac-
ity. Although our tiling method requires overhead for data
transfer from GPU memory to CPU memory for non-unified
memory architectures, this is reducible for unified memory
architectures such as PlayStation®4.

8. Conclusions

This paper has presented an adaptive tiling technique for
linked-list based ray-bundle tracing. This per-pixel linked-
list has the critical limitation of the risk of memory over-
flow. The proposed technique does not only adapt the ray-
bundle resolution to importance distribution similar to ASM
approaches, but also reduces the overflow risk by subdivid-
ing tiles when overflow is predicted. To estimate memory
usage, fragment count analysis and a mipmapping based es-
timation were introduced. Since our method dramatically re-
duces overflow risk with less parameter tuning, large and
complex scenes can now be efficiently rendered with ray-
bundle tracing. This paper demonstrated baking light maps
of large scenes. Although our method cannot avoid overflow
risks completely, the resulting error is almost undetectable
in the resulting images. In addition, overflows can be erased
completely by recomputing the ray-bundles with a 6% over-
head.

We believe our technique is also effective for general
global illumination rendering from a camera view or other
multi-fragment rendering such as OIT. In addition, our
method can be optimized for those applications. In future
work, we would like to investigate such applications and op-
timizations.

Acknowledgements

The polygon models are courtesy of Square Enix Agni’s Phi-
losophy project, Visual Works, and Advanced Technology
Division. The authors would like to thank the anonymous
reviewers for valuable comments and helpful suggestions.

Appendix A: Single-pass Tile Subdivision on a GPU

The recursive tile subdivision should be performed on a
GPU, because the importance map and fragment count map
are available in GPU memory. For such subdivision or tree

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

Es Es Es s 5 Es Es Es

3 3 3 3 3 3 3

2 2 2 2 2 2 2 2

Q. o o Q o Q o Q.

B B # & #§ i § W
[. Jmip level 3
[I - Imip level 2
[‘_I_I I I 1mip level 1
[I I I T Imip level 0

generatedtiles

Figure 12: Our single-pass parallel tile subdivision on a
GPU. A thread is launched for each pixel on the finest mip
level, and descends the mipmaps with duplicate calculations.

Program 1: Pseudo code of parallel tile subdivision.

void TileSubdivision(const uint2 id : SV_DispatchThreadID) {
float Cpuax = min(Wz,(X*N/FragmenlCoumMap[L][(O, 0)1);
float A = GetGlobalRayBundleArea ();
for(uint i=L; i>0; ——1i) {
const uint TileWidth = Zi;
const uint2 pos = id / TileWidth;
const float C; = A * ImportanceMap[i][pos];
Cinax = min(Cpay, & * N/FragmentCountMap [i][pos]);
if (Cf < Cpax) |
const uint2 outputld = pos * TileWidth;
if (C; > 0 && id.x == outputld.x && id.y == outputld.y)
TileBuffer.Append(id, TileWidth, +/Cj);
return ;
}
A /= 4;
}
const float C; = A * ImportanceMap [0][id];
Cinax = min(Cyax, o * N/FragmentCountMap [0][id]);
TileBuffer.Append(id, 1 min(Cr, Cax)) 5

construction, a multi-pass algorithm which parallelizes each
level is generally employed [GPM11,ZGHG11, CG12], but
it produces synchronization overhead and induces more pro-
gramming complexity. Therefore, we introduce a simple
single-pass algorithm.

Program 1 is the pseudo code of our parallel algorithm.
The system value id is the thread ID. As shown in Fig. 12,
a thread is created for each pixel in the finest mip level. De-
scending the mip level from the top, each thread evaluates
the subdivision condition described in Sect. 4.3. If the tile
is subdivided, the thread descends to the next level. Other-
wise it outputs the final tile information (i.e., tile position,
tile width, and ray-bundle resolution) to TileBuffer, and then
the algorithm terminates. Since an identical tile can be eval-
uated by several threads, the output operation is restricted to
a single thread to avoid tile duplication. For acceleration, the
iteration to calculate Eq. 3 is combined with the descending
iteration. Although there are many duplicate calculations, es-
pecially for the upper mip level, this is not so computation-
ally expensive since the upper level is cache efficient and
there is no branch divergence.

Y. Tokuyoshi, T. Sekine, T. D. Silva & T. Kanai / Adaptive Ray-bundle Tracing with Memory Usage Prediction

After the subdivision process, the resulting tile informa-
tion is copied from the GPU memory to the CPU memory
for non-unified memory architectures with overhead. This
is because ray-bundle creation commands such as viewport
setting and draw calls have to be processed by a CPU on
current CPU-GPU systems.

References

[Arv04] ARvo J.: Tiled shadow maps. In Proc. of CGI 2004
(2004), pp. 240-247. 3

[Car84] CARPENTER L.: The a-buffer, an antialiased hidden sur-
face method. SIGGRAPH Comput. Graph. 18 (1984), 103-108.
2,3

[CG12] CRASSIN C., GREEN S.: Octree-based sparse voxeliza-
tion using the gpu hardware rasterizer. In OpenGL Insights. CRC
Press, 2012, ch. 22, pp. 303-319. 8,9

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L. D., SiLVA
C. T.: Hardware-assisted visibility ordering for unstructured vol-
ume rendering. /EEE TVCG 11 (2005), 285-295. 3

[Eng06] ENGEL W.: Cascaded shadow maps. In ShaderX5.
Charles River Media, 2006, pp. 197-206. 3

[EveO1] EVERITT C.: Interactive Order-Independent Trans-
parency. Tech. rep., NVIDIA Corporation, 2001. 2

[FFBGO1] FERNANDO R., FERNANDEZ S., BALA K., GREEN-
BERG D. P.: Adaptive shadow maps. In Proc. of SSIGGRAPH
2001 (2001), pp. 387-390. 3

[GPM11] GARANZHA K., PANTALEONI J., MCALLISTER D.:
Simpler and faster hlbvh with work queues. In Proc. of HPG
2011 (2011), pp. 59-64. 9

[GWO07a] GIEGL M., WIMMER M.: Fitted virtual shadow maps.
In Proc. of GI 2007 (2007), pp. 159-168. 3, 4

[GW07b] GIEGL M., WIMMER M.: Queried virtual shadow
maps. In Proc. of I3D 2007 (2007), pp. 65-72. 3

[Hac02] HACHISUKA T.: Parthenon renderer, 2002. URL:
http://www.bee-www.com/parthenon/. 3

[Hac05] HACHISUKA T.: High-quality global illumination ren-
dering using rasterization. In GPU Gems 2. Addison-Wesley
Professional, 2005, ch. 38, pp. 615-634. 2,9

[HAMOOS5] HASSELGREN J., AKENINE-MOLLER T., OHLSSON
L.: Conservative rasterization. In GPU Gems 2. Addison-Wesley
Professional, 2005, ch. 42, pp. 677-690. 8

[HHGM10] HERMES J., HENRICH N., GROSCH T., MUELLER
S.: Global illumination using parallel global ray-bundles. In
Proc. of VMV 2010 (2010), pp. 65-72. 2,3, 4

[Kaj86] KAIIYAJ. T.: The rendering equation. SIGGRAPH Com-
put. Graph. 20 (1986), 143-150. 2, 3

[LGQ*08] LLoYyD D. B., GOVINDARAJU N. K., QUAMMEN
C., MOLNAR S. E., MANOCHA D.: Logarithmic perspective
shadow maps. ACM Trans. Graph. 27, 4 (2008), 106:1-106:32.
3

[LSK*05] LEFOHN A., SENGUPTA S., KNISS J., STRZODKA
R., OWENS J. D.: Dynamic adaptive shadow maps on graph-
ics hardware. In ACM SIGGRAPH 2005 Sketches (2005). 3

[LSL11] LAURITZEN A., SALVI M., LEFOHN A.: Sample distri-
bution shadow maps. In Proc. of I3D 2011 (2011), pp. 97-102.
3

[LSO07] LEFOHN A., SENGUPTA S., OWENS J. D.: Resolution-
matched shadow maps. ACM Trans. Graph. 26, 4 (2007), 20:1—
20:17. 3

[LTYMO6] LroyD B., TUFT D., YOON S.-E., MANOCHA D.:
Warping and partitioning for low error shadow maps. In Proc. of
EGSR 2006 (2006), pp. 215-226. 3

[MT04] MARTIN T., TAN T.-S.: Anti-aliasing and continuity
with trapezoidal shadow maps. In Proc. of EGSR 2004 (2004),
pp. 153-160. 3

[NSS10] NIESSNER M., SCHAFER H., STAMMINGER M.: Fast
indirect illumination using layered depth images. Vis. Comput.
26, 6-8 (2010), 679-686. 3,9

[PBD*10] PARKER S. G., BIGLER J., DIETRICH A.,
FRIEDRICH H., HOBEROCK J., LUEBKE D., MCALLIS-
TER D., MCGUIRE M., MORLEY K., ROBISON A., STICH M.:
Optix: a general purpose ray tracing engine. ACM Trans. Graph.
29,4 (2010), 66:1-66:13. 2

[Ros12] ROSEN P.: Rectilinear texture warping for fast adaptive
shadow mapping. In Proc. of 13D 2012 (2012), pp. 151-158. 3,
8,9

[Sbe96] SBERT M.: The Use of Global Directions to Compute
Radiosity - Global Monte Carlo Techniques. PhD thesis, Catalan
Technical University, 1996. 2

[SD0O2] STAMMINGER M., DRETTAKIS G.: Perspective shadow
maps. ACM Trans. Graph. 21, 3 (2002), 557-562. 3

[SKP98] SZIRMAY-KALOS L., PURGATHOFER W.: Global ray-
bundle tracing with hardware acceleration. In Rendering Tech-
niques 98 (1998), pp. 247-258. 2

[Thill] THIBIEROZ N.: Order-independent transparency using
per-pixel linked lists. In GPU Pro 2. AK Peters, 2011, ch. VIL2,
pp. 409-431. 2,3

[TISO8] TEVS A., IHRKE I., SEIDEL H.-P.: Maximum mipmaps
for fast, accurate, and scalable dynamic height field rendering. In
Proc. of I3D 2008 (2008), pp. 183-190. 4

[TN11] THOMSEN A., NIELSEN K. H.: Approximate radiosity
using stochastic depth buffering. Journal of Graphics, GPU, and
Game Tools 15 (2011), 225-234. 3

[TO12a] TOKUYOSHI Y., OGAKI S.: Imperfect ray-bundle trac-
ing for interactive multi-bounce global illumination. In HPG
2012 Posters (2012). 3

[TO12b] TOKUYOSHI Y., OGAKI S.: Real-time bidirectional
path tracing via rasterization. In Proc. of I3D 2012 (2012),
pp- 183-190. 3,9

[TSO11] TOKUYOSHI Y., SEKINE T., OGAKI S.: Fast global
illumination baking via ray-bundles. In ACM SIGGRAPH Asia
2011 Technical Sketches (2011), pp. 25:1-25:2. 2, 3, 4

[VF12] VASILAKIS A. A., FuDOS I.: S-buffer: Sparsity-aware
multi-fragment rendering. In EG 2012 Short Papers (2012),
pp. 101-104. 3

[VF13] VASILAKIS A. A., FuDOS I.: Depth-fighting aware
methods for multifragment rendering. IEEE TVCG 19, 6 (2013),
967-977. 3

[WSP04] WIMMER M., SCHERZER D., PURGATHOFER W.:
Light space perspective shadow maps. In Proc. of EGSR 2004
(2004), pp. 143-151. 3

[YHGT10] YANG]J.C., HENSLEY J., GRUN H., THIBIEROZ N.:
Real-time concurrent linked list construction on the gpu. Comput.
Graph. Forum 29 (2010), 1297-1304. 2, 3

[ZGHGI11] ZHou K., GONG M., HUANG X., GUO B.: Data-
parallel octrees for surface reconstruction. IEEE TVCG 17, 5
(2011), 669-681. 9

[ZSXL06] ZHANGF., SUN H., XU L., LUN L. K.: Parallel-split

shadow maps for large-scale virtual environments. In Proc. of
VRCIA 2006 (2006), pp. 311-318. 3

(© 2013 The Author(s)

Computer Graphics Forum (©) 2013 The Eurographics Association and John Wiley & Sons Ltd

http://www.bee-www.com/parthenon/

