An Implementation of Adaptive Tile Subdivision on the GPU

Yusuke Tokuyoshi*
Square Enix Co., Ltd.

Figure 1: One of the applications of adaptive tiling is adaptive ray-bundle tracing. This scene has 45.3M texel light maps (4.9 km in diameter,
3.7M triangles). These light maps are precomputed using ray-bundle tracing with adaptive tiling.

Figure 2: Adaptive tiling according to importance based on a quadtree (i.e., mipmap of the importance map). Left: importance map viewed
from a sample direction. (importance is represented with brightness). For baking light maps using ray-bundle tracing, the importance map is
given by rendering light map texel densities. Right: quadtree-based adaptive tile subdivision.

1 Introduction

In this course, we explain a GPU implementation of adaptive tiling which can be used for several applications such as fitted virtual shadow
maps [Giegl and Wimmer 2007] and adaptive ray-bundle tracing [Tokuyoshi et al. 2013] (Fig. 1). For these applications, the render target is
split into several tiles adaptively in order to fit an importance map which represents required ray densities, as shown in Fig. 2. This adaptive
tiling is done by a quadtree-based recursive tile subdivision. For GPUs, it is optimizable with careful use of synchronizations.

In this course note, Sect. 2 first explains a basic algorithm of tile subdivision using a recursion style. Then, Sect. 3 shows a simple
parallelization of this tiling using DirectCompute. However, this implementation can have a lot of synchronization overheads. Therefore, we
introduce an optimization technique to reduce synchronizations in Sect. 4. Finally, experimental results of this optimization are shown in
Sect. 5.

*e-mail:tokuyosh @square-enix.com

2 Algorithm of Adaptive Tile Subdivision

In order to build a quadtree implicitly, our importance map resolution is given as a power of two, and the maximum mipmap of the importance
map is generated. Once the importance maximum mipmap is built, the recursive tile subdivision is started from the top mip level. If
the importance (e.g., required buffer resolution) for a tile is greater than a given threshold (e.g., memory capacity), the tile is subdivided
recursively by descending the mipmaps. Algorithm 1 shows a pseudo code of our tile subdivision. The input parameter mipLevel is the
current mip level, and the 2D vector value pixelID is the pixel position of the importance map at the mip level. If the importance is lower than
the threshold, the current tile information (i.e., mip level, pixel position, importance, and threshold) is outputted. Otherwise, this procedure is
called recursively for a lower mip level.

Algorithm 1 Recursive tile subdivision.
procedure RecursiveTileSubdivision(mipLevel, pixellD)

importance = ImportanceMap[mipLevel][pixelID]

threshold = GetThreshold(mipLevel, pixelID)

if importance < threshold then
tileData = EncodeTileData(mipLevel, pixellD, importance, threshold)
Output(tileData)

else
RecursiveTileSubdivision(mipLevel - 1, 2 * pixelID)
RecursiveTileSubdivision(mipLevel - 1, 2 * pixellD + int2(1,0))
RecursiveTileSubdivision(mipLevel - 1, 2 * pixellD + int2(0, 1))
RecursiveTileSubdivision(mipLevel - 1, 2 * pixellD + int2(1, 1))

end if

3 Parallelization for Each Level

Recursive algorithms are difficult to implement for GPUs using a single compute pass. However, for each level, processes are independent
from each other. Thus, a multi-pass implementation parallelizing for each level is often employed [Garanzha et al. 2011; Zhou et al. 2011;
Crassin and Green 2012]. In such algorithms, a compute pass is launched for each level. Therefore, temporary values, which are required for
the next pass, have to be stored in device memory at the end of the pass, and then they have to be restored in the next pass.

Algorithm 2 shows a pseudo code of this multi-pass tile subdivision. TOP_MIP_LEVEL is the top mip level of the importance mipmap.
The procedures TileSubdivisionTopLevel and TileSubdivisionEachLevel represent compute passes on a GPU which parallely subdivide tiles
for each level. Buffers temporaryBuffer[0] and temporaryBuffer[1] are in device memory, which hold temporary data between consecutive
compute passes. They are accessed by ping-pong buffering.

1 thread

— e e e = e e e e = SYNCHPONIZAtION
2 threads
B —— = === == Synchronization
2 threads

- == synchronization

3 threads

Figure 3: Parallel tile subdivision for each level.

Algorithm 2 Multi-pass tile subdivision using parallelization for each level.
procedure MultipassTileSubdivision()

temporaryBuffer[O] = TileSubdivisionTopLevel()
for i =0 to TOP_MIP_LEVEL - 1 do

temporaryBuffer[(i + 1) % 2] = TileSubdivisionEachLevel(i, temporaryBuffer[i % 2])
end for

(©2014 Square Enix Co., Ltd. All rights reserved.

3.1 Implementation Details using DirectCompute

Fig. 4 shows the pipeline using DirectCompute. Each procedure consists of three passes which have a dependency on resources of the
previous pass.

TileSubdivisionTopLevelCS

CopyStructureCount

CalculatelnputArgsCS
TileSubdivisionEachLevelCS

CopyStructureCount

CalculatelnputArgsCS

Figure 4: Pipeline of the parallel tile subdivision using DirectCompute.

TileSubdivisionTopLevel. Program 1 shows the compute shader of TileSubdivisionTopLevel of Algorithm 2. Since the top mip level has
only a single pixel, this shader is dispatched with a single thread. If the tile is not subdivided, it is outputted into fileBuffer which is an
AppendStructuredBuffer. Otherwise, the tile information (i.e., pixelID) is stored in outputTemporaryBuffer which is temporaryBuffer[0]
of Algorithm 2. Both temporaryBuffer[0] and temporaryBuffer[1] are also AppendStructuredBuffers. The hidden counter values of file-
Buffer and outputTemporaryBuffer are initialized by {0,0} using ID3D11DeviceContext::CSSetUnorderedAccessViews. Once this com-
pute shader is finished, the counter value of outputTemporaryBuffer is copied to a buffer temporaryDataCount in device memory by using
ID3D11DeviceContext::CopyStructureCount. Then, a single thread compute pass shown in Program 2 is dispatched for the next procedure.
The detail of Program 2 is described in the next paragraph.

Program 1: Tile subdivision at the top level.

AppendStructuredBuffer< TILE_LDATA > tileBuffer : register(u0);
AppendStructuredBuffer< uint > outputTemporaryBuffer : register(ul);
Texture2D< float > importanceMap : register(t0);

void SubdivideTiles(const uint mipLevel, const uint2 pixelID)
{
const float importance = importanceMap.mips[mipLevel][pixellD];
const float threshold = GetThreshold(mipLevel, pixelID);
if (importance < threshold) {
const TILE.DATA tileData = EncodeTileData(mipLevel, pixelID, importance, threshold);
tileBuffer.Append(tileData);
} else {
const uint temporaryData = EncodeTemporaryData(pixellD);
outputTemporaryBuffer. Append(temporaryData);
}
}

[numthreads(1, 1, 1)]
void TileSubdivisionTopLevelCS ()

SubdivideTiles (TOP_.MIP_LEVEL, uint2(0, 0));
}

TileSubdivisionEachLevel. Program 3 is the compute shader of TileSubdivisionEachLevel of Algorithm 2. This shader performs in
parallel. The number of threads in a work group is (2,2, WORK_GROUP_SIZE/4), where WORK_GROUP _SIZE is the total size of the
work group which is a multiple of the SIMD width (e.g., 32 for NVIDIA® and 64 for AMD). For this case, id.xy represents a local
index of a child tile, and id.z represents an index of inputTemporaryBuffer which has parent tile information. Since id.z can be larger
than the size of inputTemporaryBuffer (given by temporaryDataCount) to exploit SIMD efficiency, an early return is used. For this com-
pute pass, the number of dispatched work groups must be (1, 1, [femporaryDataCount/(WORK_GROUP_SIZE/4)]). This can be done by
ID3D11DeviceContext::Dispatchindirect without data transfer from GPU memory to CPU memory. In order to calculate the input argument

(©2014 Square Enix Co., Ltd. All rights reserved.

Program 2: Calculation of the input argument for compute units.

RWBuffer< uint > bufferForArgs : register(u0);
Buffer< uint > temporaryDataCount : register(t0);

[numthreads(1, 1, 1)]
void CalculatelnputArgsCS ()
{

bufferForArgs[2] = (temporaryDataCount[0] + (WORK.GROUPSIZE / 4) — 1) / (WORK.GROUPSIZE / 4);
}

of DispatchIndirect and store it in a buffer, Program 2 is used. This program updates the number of dispatched work groups for the z-axis
using temporaryDataCount. For the x- and y-axes, since they are always one, they are initialized with one when bufferForArgs is created.
The constant value gPassIndex is given from “i” of Algorithm 2, and used for calculation of the current mip level. For this pass, the hidden
counter value of fileBuffer is not initialized, but the counter of outputTemporaryBuffer have to be initialized with zero. Therefore, {—1,0}

are set for initial counter values of CSSetUnorderedAccessViews.

Program 3: Tile subdivision at each level.

StructuredBuffer < uint > inputTemporaryBuffer : register(tl);
Buffer< uint > temporaryDataCount : register(t2);

[numthreads(2, 2, WORK.GROUPSIZE / 4)]
void TileSubdivisionEachLevelCS(const uint3 id : SV_DispatchThreadID)
{
if (id.z >= temporaryDataCount[0]) {
return ;
}
cosnt uint2 parentPixellD = DecodeTemporaryData(inputTemporaryBuffer[id.z]);
const uint2 pixellD = 2 % parentPixellD + id.xy;
const uint mipLevel = TOP.MIP.LEVEL — | — gPassIndex;
SubdivideTiles (mipLevel, pixellD);

3.2 Limitations

As shown in Fig. 4, this parallelization needs three synchronizations for each level due to the dependency of resources. This synchronization
overhead can be more expensive than actual computation, if threads are few. This is inefficient especially for upper levels. For example, only
a single thread is dispatched for the top mip level, even though a GPU can execute thousands of threads in parallel. The update of the input
argument of DispatchIndirect using the single thread compute pass (Program 2) also cannot exploit parallelism. In addition, the hidden atomic
counter of outputTemporaryBuffer also has a synchronization overhead. In order to reduce these overheads, the next section introduces an
optimization.

4 Reducing Synchronizations

In order to reduce synchronizations, tiles are subdivided for several levels in a compute pass. To perform this, the quad-tree is represented
using several subtrees as shown in Fig. 5. For each subtree, tiles are subdivided in parallel as shown in Fig. 6. For this subdivision, a thread
is created for each pixel at the finest mip level of the subtree. Descending the mip level from the top of the subtree, each thread evaluates
the subdivision condition. If the tile is subdivided, the thread descends to the next level. Otherwise it outputs the final tile information to
tileBuffer, and then the algorithm terminates. Since an identical tile can be evaluated by several threads, the output operation is restricted to
a single thread to avoid tile duplication. Although there are many duplicate calculations, especially for the upper mip level of the subtree,
this is more inexpensive than the synchronization overheads, if the subtree is not large. In our experiments, 6 levels are most efficient for the
subtree size.

Algorithm 3 shows the optimized tile subdivision using subtrees. SUBTREE_LEVELS is 6 for our case. TileSubdivisionTopSubtree, TileSub-
divisionMiddleSubtrees, and TileSubdivisionBottomSubtrees represents compute passes for subtrees. In this algorithm, since the number of
iterations is smaller than Algorithm 2, the synchronization overheads are reduced.

4.1 Implementation Details

Fig. 7 shows the optimized pipeline. In addition to reducing the number of iterations, CalculateInputArgsCS is omitted unlike Fig 4.

(©2014 Square Enix Co., Ltd. All rights reserved.

SUBTREE_WIDTH? threads

—— o e e e e e e e SYN1ICHrONIZAtION

2xSUBTREE_WIDTH? threads

- = o e e e = SYNCOroONization

3xSUBTREE_WIDTH? threads

Figure 5: Subtree-based parallel tile subdivision. SUBTREE_WIDTH? threads are dispatched for each subtree (orange arrows).

Algorithm 3 Optimized tile subdivision using parallelization for each subtree level.
procedure OptimizedTileSubdivision()
temporaryBuffer[0] = TileSubdivisionTopSubtree()
N = |TOP_MIP_LEVEL / SUBTREE_LEVELS |
if N > O then
fori=0toN-2do
temporaryBuffer[(i + 1) % 2] = TileSubdivisionMiddleSubtrees(i, temporaryBuffer[i % 2])
end for
TileSubdivisionBottomSubtrees(temporaryBuffer[(N-1) % 2])
end if

TileSubdivisionTopSubtree. Program 4 is the compute shader of TileSubdivisionTopSubtree of Algorithm 3, which performs tile subdi-

oSUBTREE.LEVELS oSUBTREE.LEVELS 1 ORK.
WORKGROUP-WIDTH | > | WORKGROUP-WIDTH | ° - Wi -

GROUP_WIDTH is given as a power of two, and WORKGROUP_WIDTH? should be a multiple of the SIMD width for efficiency. In this
course note, WORKGROUP_WIDTH = 8 is used. For this compute pass, the system value id represents a pixel position at the finest mip level
of the subtree. Unlike the parallelization for each level, SUBTREE_WIDTH? (e.g., 642) threads are dispatched for the top subtree. As men-
tioned in the previous paragraph, each thread descends the mip level from the top of the subtree using a simple loop. At the finest mip level of
the subtree, this shader computes the SubdivideTiles function described in Program 1 which stores temporary data into outputTemporaryBuffer
for the next procedure.

vision for the top subtree. The number of dispatched work groups for this shader is ([

TileSubdivisionMiddleSubtrees. For subtrees of middle levels, the compute shader shown in Program 5 is used. Similar to Program 3,
this shader restores temporary data from inputTemporaryBuffer using the system value id.z, where id.z is the index of the subtree. The pixel
index of the top of the subtree is obtained from this temporary data. The system value id.xy is a local pixel index at the finest mip level of the
subtree. Since the number of threads in a work group for the z-axis is only one, a calculation pass for the input argument of DispatchIndirect
is unnecessary unlike Program 2 in Subsect. 3.1. The counter value of the previous outputTemporaryBuffer can be copied to bufferForArgs
directly, using CopyStructureCount with offset 2. Therefore, the overhead caused by Program 2 is now eliminated. In addition, the early

termination also can be omitted. The number of work groups for the x- and y-axes are not updated similar to Subsect. 3.1, since they are
oSUBTREE_LEVELS ‘|

always ’VWORKGROUP,WIDTH

TileSubdivisionBottomSubtrees. Program 4 is the compute shader of TileSubdivisionBottomSubtrees of Algorithm 3. Since
TOP_MIP_LEVEL might be undividable by SUBTREE_LEVELS, this specialized pass is used for the bottom subtrees.

5 Results

Fig. 8 shows computation times of the optimized adaptive tile subdivision for different SUBTREE_LEVELS. For this experiment, tiles are
subdivided for adaptive ray-bundle tracing [Tokuyoshi et al. 2013] of the scene of Fig. 2. In our case, SUBTREE_LEVELS = 6 is the fastest,
and it is about 6 times faster than the parallelization for each level. For SUBTREE_LEVELS = 6, 4096 threads run in parallel at least. The
optimal SUBTREE_LEVELS depends on the number of cores in the GPU. If a GPU has a larger number of cores, we can moreover exploit the

(©2014 Square Enix Co., Ltd. All rights reserved.

2 g 2 2 g 3 2 2
o o o o o o o o
(@] = [w = wu D ~Jl

- — - - ; mip level 3

I L1 I $ 1 3 mip level 2

g li : | I Jmip level 1

[I | I] I I I Jmip level O

generatedtiles

Figure 6: Synchronization-free tile subdivision for a subtree. A thread is launched for each pixel on the finest mip level of the subtree, and
descends the mipmap with duplicate calculations.

TileSubdivisionTopSubtreeCS

CopyStructureCount

TileSubdivisionMiddleSubtreesCS

CopyStructureCount

TileSubdivisionBottomSubtreesCS

Figure 7: Pipeline of the optimized parallel tile subdivision.

parallelism by increasing SUBTREE_LEVELS.

6 Conclusion

Dependencies of resources can require a lot of synchronizations. These synchronization overheads are sometimes more computationally
expensive than introducing duplicate calculations for GPUs. This course note showed an implementation and optimization of a recursive tile
subdivision algorithm. To reduce synchronization overheads, subtree-based compute kernels were introduced. Although these kernels have
duplicate calculations, they are amortized by parallelization.

Acknowledgements

The polygon models are courtesy of Square Enix Agni’s Philosophy project, Visual Works, and Advanced Technology Division.

References

CRASSIN, C., AND GREEN, S. 2012. Octree-based sparse voxelization using the gpu hardware rasterizer. In OpenGL Insights. CRC Press,
ch. 22, 303-319.

GARANZHA, K., PANTALEONI, J., AND MCALLISTER, D. 2011. Simpler and faster hlbvh with work queues. In Proc. HPG ’11, 59-64.
GIEGL, M., AND WIMMER, M. 2007. Fitted virtual shadow maps. In Proc. GI *07, 159-168.

TOKUYOSHI, Y., SEKINE, T., DA SILVA, T., AND KANAI, T. 2013. Adaptive ray-bundle tracing with memory usage prediction: Efficient
global illumination in large scenes. Comput. Graph. Forum 32,7, 315-324.

ZHOU, K., GONG, M., HUANG, X., AND GUO, B. 2011. Data-parallel octrees for surface reconstruction. /[EEE TVCG 17,5, 669-681.

(©2014 Square Enix Co., Ltd. All rights reserved.

Program 4: Tile subdivision for the top subtree.

AppendStructuredBuffer< TILE.DATA > tileBuffer : register(u0);
AppendStructuredBuffer< uint > outputTemporaryBuffer : register(ul);
Texture2D< float > importanceMap : register(t0);

void SubdivideTilesForSubtrees(const uint upperLevel, const uint lowerLevel, const uint2 id)
{
for(uint i = upperLevel; i > lowerLevel; ——i) {
const uint width = 1 << (i — lowerLevel);
const uint2 pixellD = id / width;
const float importance = importanceMap.mips[i][pixellD];
const float threshold = GetThreshold(i, pixellID);
if (importance < threshold) {
const uint2 outputID = pixellD % width;
if (id.x == outputID.x && id.y == outputlD.y) {
const TILE.DATA tileData = EncodeTileData(i, pixelID, importance, threshold);
tileBuffer.Append(tileData);
}

return;

}
}
SubdivideTiles (lowerLevel, id);
}

static const uint LOWERLEVEL = max(TOP.MIP_.LEVELS — SUBTREE.LEVELS, 0);
static const uint SUBTREE.WIDTH = 1 << min(SUBTREE.LEVELS, TOP_MIP_LEVELS);
static const uint CLAMPED_-WORKGROUP.WIDTH = min(WORKGROUP.WIDTH, SUBTREE.WIDTH);

[numthreads (CLAMPED_-WORKGROUP_WIDTH, CLAMPED_.WORKGROUP.WIDTH, 1)]
void TileSubdivisionTopSubtreeCS(const uint2 id : SV_DispatchThreadID)

SubdivideTilesForSubtrees (TOP.MIP.LEVEL, LOWERLEVEL, id);
}

Program 5: Tile subdivision for middle level subtrees.

StructuredBuffer< uint > inputTemporaryBuffer : register(tl);
static const uint SUBTREE.ZWIDTH = 1 << SUBTREE_LEVELS;

[numthreads(WORKGROUPWIDTH, WORKGROUP.WIDTH, 1)]

void TileSubdivisionMiddleSubtreesCS(const uint3 id : SV_DispatchThreadID)

{
const uint upperLevel = TOP_MIP_.LEVEL — SUBTREE.LEVELS — gPassIndex * SUBTREE._LEVELS;
const uint lowerLevel = upperLevel — SUBTREE_LEVELS;
const uint2 parentPixellD = DecodeTemporaryData(inputTemporaryBuffer[id.z]);
const uint2 pixellID = SUBTREE.WIDTH * parentPixellD + id.xy;
SubdivideTilesForSubtrees (upperLevel, lowerLevel, pixellD);

Program 6: Tile subdivision for bottom subtrees.

StructuredBuffer< uint > inputTemporaryBuffer : register(tl);

static const uint UPPER.LEVEL = TOP.MIP_.LEVEL — (TOP.MIP_LEVEL / SUBTREE_LEVELS) % SUBTREE_LEVELS;
static const uint SUBTREE.WIDTH = | << UPPER_LEVEL;
static const uint CLAMPED-WORKGROUP_.WIDTH = min(WORKGROUP-WIDTH, SUBTREE.WIDTH);

[numthreads (CLAMPED-WORKGROUP_WIDTH, CLAMPED.-WORKGROUP.WIDTH, 1)]

void TileSubdivisionBottomSubtreesCS (const uint3 id : SV_DispatchThreadID)

{
const uint2 parentPixellD = DecodeTemporaryData(inputTemporaryBuffer[id.z]);
const uint2 pixellID = SUBTREE.WIDTH = parentPixellD + id.xy;
SubdivideTilesForSubtrees (UPPER.LEVEL, 0, pixelID);

}

(©2014 Square Enix Co., Ltd. All rights reserved.

ms
05 -
m Parallelization for each level

m Subtree-based parallelization

0.25 -

MLLLLLRD

SUBTREE_LEVELS

Figure 8: Average computation times of adaptive tile subdivision for ray-bundle tracing of the experimental scene (Fig .2, importance map

resolution: 1024%, GPU: AMD Radeon' HD 6990). Red bars are the parallelization for each level described in Sect. 3. Blue bars are the
subtree based parallelization described in Sect. 4.

(©2014 Square Enix Co., Ltd. All rights reserved.

