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1 CONSTANT TERM TO CONTROL THE
VARIANCE

This paper samples connections via backward stochastic light culling
and naïve uniform sampling for glossy reflections and other scat-
tering effects, respectively. These two sampling techniques are
combined using multiple importance sampling (MIS) [10]. For back-
ward stochastic light culling, the probability of Russian roulette
is

p (x, yi ) = min
(
ci f (x,ω′,ωi )max (ωi · n, 0)

∥x − yi ∥2 , 1
)
, (1)

where x is the eye vertex, yi is the ith light vertex in a light vertex
cache, f (·) is the specular BRDF, ω′ is the direction from x to the
previous vertex in the eye subpath, ωi is the direction from x to
yi , n is the surface normal at x, and ci is a constant term to control
the variance. For ease of parameter tuning, this paper uses the
following ci :

ci =
Φiki
Mδ

, (2)

where Φi is the radiant flux of yi that is propagated by light subpath
tracing, ki is the reflectance at yi ,M is the number of light subpaths,
and δ is the user-specified parameter to control variance (δ = 16 in
this paper). Since this Russian roulette is performed for all the light
vertices (i.e., all the light subpaths), the sampling density is given
as

Mp (x, yi ) = min
(
Φiki f (x,ω′,ωi )max (n · ωi , 0)

δ ∥x − yi ∥2 ,M

)
. (3)

WhenM → ∞, this density will be independent fromM . In other
words, the number of sampled light vertices is sublinear toM . Hence,
our method is efficient for many light vertices. Eq. (3) is also used
to calculate the weight of MIS.

Option for Simplification. If a recursive calculation is used for
the MIS weight [4, 9], we define Φi as the total radiant flux of light
sources (which is a vertex-independent value). We can also omit ki
from Eq. (2) so that ci is an identical value. When using an identical
ci , it is not necessary to store the maximum of ci into the tree.
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2 BOUNDING ELLIPSOID FOR GLOSSY
REFLECTION

2.1 Classic Phong BRDF
The classic Phong BRDF [5] is modeled as

f
(
x,ω′,ω

)
=

max (ω · ωu , 0)η

|ω · n|
, (4)

where ωu is the perfect specular reflection direction, and η is the
Phong exponent. The bounding ellipsoid for this BRDF model was
derived by Dachsbacher and Stamminger [3]. The semiaxes of this
ellipsoid are 

ru
rv
rw

 = r̄i

max(t , 1 − t)

W (t)
W (t)

 , (5)

where r̄i is the size of the ellipsoid (r̄i =
√

ci
ξi

in this paper),W (·)

is the width of the isosurface of the Phong reflection, and t is the
parameter that maximizesW (t). These t andW (t) are given by the
following equations:

t =

(
η

η + 2

) η+2
4
, (6)

W (t) = t
η
η+2

√
1 − t

4
η+2 . (7)

The rotation matrix of this ellipsoid is

R =
[
ωu ωw × ωu ωw

]
, (8)

where ωw is a unit vector orthogonal to ωu and n (i.e., ωw =
ωu×n
∥ωu×n∥

for ωu , n). The center of the ellipsoid is

C = x + tr̄iωu . (9)

2.2 GGX Microfacet BRDF
The microfacet BRDF [2] is modeled as

f
(
x,ω′,ω

)
=

F (ω′ · ωh )G (ω′,ω)D(ωh · n)
4 |ω′ · n| |ω · n|

, (10)

where ωh =
ω′+ω
∥ω′+ω∥

is the halfvector, F (ω′ · ωh ) ∈ [0, 1] is the
Fresnel factor,G (ω′,ω) ∈ [0, 1] is themasking-shadowing function,
and D(ωh · n) ∈ [0,∞] is the normal distribution function (NDF).
The bounding ellipsoid for the microfacet BRDF model with the
GGX NDF [8, 11] was derived by Tokuyoshi and Harada [7]. The
semiaxes of this ellipsoid are

ru
rv
rw

 = r̄i


1+α 2
2α
1
1

 , (11)
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where α is the GGX roughness parameter. The rotation matrix of
this ellipsoid is the same as Eq. (8). The center of the ellipsoid is

C = x +
1 − α2

2α r̄iωu . (12)

For the microfacet BRDF, the size r̄i takes the maximum of the Fres-
nel factor Fmax (ω′) and the maximum of the masking-shadowing
function Gmax (ω′) as follows:

r̄i =

√
ciFmax (ω′)Gmax (ω′)

4πξi |ω′ · n|
. (13)

Although Fmax (ω′) = 1 and Gmax (ω′) = 1 can be used for the
worst case, smaller upper bounds are available for some models.

Smith Masking Function. For the Smith microsurface model [6],
the upper bound of the masking-shadowing function is obtained as
follows:

Gmax
(
ω′

)
=

|ω′ · n|∫
S2 D (ω · n)max (ω′ · ω, 0) dω

=
2 |ω′ · n|

|ω′ · n| +
√(

1 − α2) (ω′ · n)2 + α2
. (14)

Schlick Fresnel Factor. For Schlick Fresnel factor, the upper bound
is obtained by

Fmax
(
ω′

)
= F

(
cos

(
θmax
h

(
ω′

) ))
, (15)

where θmax
h (ω′) = 1

2 arccos (ω′ · n) + π
4 is the maximum of the

halfvector angle, and cos
(
θmax
h (ω′)

)
=

√
1−
√

1−(ω′ ·n)2
2 .

Unpolarized Fresnel Factor for Dielectrics. For dielectrics with un-
polarized light [2], the upper bound of the Fresnel factor is obtained
by

Fmax
(
ω′

)
= max

(
F (1), F

(
cos

(
θmax
h

(
ω′

) )))
. (16)

2.3 Other Microfacet BRDFs with Bell-Shaped
NDFs

Bell-shaped NDFs are often used for microfacet BRDFs. Since the
GGX NDF is also bell-shaped, a bell-shaped NDF can be replaced
with the GGX NDF in the probability of Russian roulette (Eq. (1)).
For example, Beckman NDF [1] can be approximated with the GGX
NDF using the same roughness parameter. Therefore, the ellipsoid
mentioned in §2.2 is also used for other microfacet BRDFs.

3 MINIMUM RANDOM NUMBER
CALCULATION

Subsection §3.1 first derives theO(1) form to calculate the minimum
of many non-stratified random numbers. Then, we describe practi-
cal issues for the on-the-fly random number assignment using this
form in tree traversal. Subsection §3.2 describes how these issues
are addressed in our semi-stratified random number assignment.

3.1 Minimum of Non-Stratified Random
Numbers

3.1.1 Derivation. The probability that a uniform random num-
ber z ∈ [0, 1) is the minimum within N random numbers is given
by the following recursion:

PN (z) = (1 − z)PN−1(z), (17)

P1(z) = 1, (18)
where 1 − z is the probability that the other random number is
larger than z. Expanding this recursion, we obtain the following
probability:

PN (z) = (1 − z)N−1. (19)
Since z is uniformly distributed, the probability density function
(PDF) of the minimum random number is obtained by normalizing
Eq. (19) as follows:

P̂N (z) =
PN (z)∫ 1

0 PN (z′) dz′
= N (1 − z)N−1. (20)

The cumulative distribution function (CDF) of this PDF is yielded
as

CN (z) =

∫ z

0
P̂N

(
z′
)

dz′ = 1 − (1 − z)N . (21)

Using the inverse function of this CDF, the minimum random num-
ber is obtained using a single random number ξ ∈ [0, 1) as follows:

C−1
N (ξ ) = 1 − (1 − ξ )

1
N . (22)

3.1.2 On-the-fly Assignment in Tree Traversal. In our BVH, one
child node has the same minimum random number as its parent.
Thus this child node is randomly selected with the probability

|L0 |
|L0 |+ |L1 |

, where |L0 | is the number of leaves covered by the selected
child, and |L1 | is the number of leaves covered by the other child.
When one child is selected, the other child node’s minimum random
number must be equal to or greater than the parent’s value. Let
ξmin be the minimum random number at the parent node; then the
other child node’s value ξ ′min is the minimum within [ξmin, 1) as
follows:

ξ ′min = min
i ∈L1

ξi = ξmin + (1 − ξmin)C
−1
|L1 |

(ξ )

= 1 − (1 − ξmin)(1 − ξ )
1

|L1 | . (23)

For the root node, ξmin = 0 is used.

3.1.3 Issues. Although theminimum random number for a node
is generated using Eq. (23), a large precision error of floating point
calculation is produced for tens of millions of L1 (Fig. 1b). This error
is propagated and accumulated into descendant nodes. In addition,
stratification of random numbers is difficult for this algorithm.
Therefore, we introduce on-the-fly semi-stratified random number
assignment which uses a simpler and more precise calculation.

3.2 Minimum of Semi-Stratified Random
Numbers

3.2.1 Derivation. For stratified sampling, the minimum of ran-
dom numbers is within the lowest stratum. Therefore, the probabil-
ity that a stratified random number z ∈ [0, 1) is the minimumwithin
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RMSE: 3.479
40 s

(a) Precomputed [7]

RMSE: 0.435
113 s

(b) Non-stratified (Eq. (23))

RMSE: 0.310
99 s

(c) Semi-stratified (Eq. (27)) (d) Reference

Figure 1: Results of backward stochastic light culling (without MIS weights) using different random number assignment al-
gorithms (N = 45039313 light vertices). A precomputed single random number for each light vertex (a) produces undesirable
artifacts due to the correlation of variance. On-the-fly assignment of non-stratified random numbers (b) is unbiased in theory,
however it produces noticeable bias in practice due to the precision error of floating point calculation. On-the-fly assignment
of semi-stratified random numbers (c) avoids this precision error in addition to slightly improving the stratification.

N stratified random numbers is given by the following equation:

PN (z) =

{
1 if z < 1

N
0 otherwise.

(24)

Thus, the PDF is yielded as

P̂N (z) =
PN (z)∫ 1

0 PN (z′) dz′
=

{
N if z < 1

N
0 otherwise.

(25)

Hence, the inverse of the CDF is trivially derived as follows:

C−1
N (ξ ) =

ξ

N
. (26)

Compared to Eq. (22), this calculation is simpler and does not in-
crease the precision error for large N .

3.2.2 On-the-fly Assignment in Tree Traversal. Similar to §3.1.2,
the parent’s minimum random number is transferred into one ran-
domly selected child node. When one child is selected, the other
child node’s minimum random number is generated. Unlike §3.1.2,
since stratified sampling is assumed for each node, this child node’s
value ξ ′min must be equal to or greater than the upper bound of the
parent’s stratum. Therefore, let s be the lower bound of ξ ′min (which
is the upper bound of the parent’s stratum); then ξ ′min is obtained
as

ξ ′min = min
i ∈L1

ξi = s + (1 − s)C−1
|L1 |

(ξ )

= s − (1 − s)
ξ

|L1 |
. (27)

The lower bound s ′ for the next minimum random number is cal-
culated by

s ′ = s − (1 − s)
1
|L1 |

. (28)

For the root node, s = 0 is used. Compared to Eq. (23), the above
calculations do not use the parent’s minimum random number as
the lower bound, and the lower bound is computed precisely due to
the simple form. Hence, the precision error is negligible for our on-
the-fly random number assignment algorithm (Fig. 1c). Although
stratified sampling is assumed for each node, generated random

numbers for leaves are not stratified completely. However, they
are still uniformly distributed and partially stratified. Thus, strat-
ification is slightly improved compared to non-stratified random
numbers.
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