
Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

MORPHING OF GRANULAR SOUNDS

Sadjad Siddiq

Advanced Technology Division,
Square Enix Co., Ltd.

Tokyo, Japan
siddsadj@square-enix.com

ABSTRACT

Granular sounds are commonly used in video games but the con-

ventional approach of using recorded samples does not allow sound

designers to modify these sounds. In this paper we present a tech-

nique to synthesize granular sound whose tone color lies at an arbi-

trary point between two given granular sound samples. We first ex-

tract grains and noise profiles from the recordings, morph between

them and finally synthesize sound using the morphed data. Dur-

ing sound synthesis a number of parameters, such as the number of

grains per second or the loudness distribution of the grains, can be

altered to vary the sound. The proposed method does not only al-

low to create new sounds in real-time, it also drastically reduces the

memory footprint of granular sounds by reducing a long recording

to a few hundred grains of a few milliseconds length each.

1. INTRODUCTION

1.1. Granular synthesis in video games

In previous work we described the morphing between simple im-

pact sounds [1]. In this paper we focus on morphing between com-

plex sounds that consist of a large amount of similar auditory events.

Examples of such sounds are the sound of rain, consisting of the

sound of thousands of rain drops hitting the ground; the sound of

running water, which is essentially the sound of thousands of res-

onating air bubbles in water [2]; the sound of popping fireworks or

the sound of breaking rock [3]. Since we use granular synthesis to

synthesise such sounds in real-time we call these sounds "granular

sounds" and the auditory events they consist of "grains".

Although such sounds are used extensively in video games,

they are rarely produced by granular synthesis. The most com-

mon approach is to rely on recorded samples, but this does not

give sound designers much control over the sound. Additionally

such samples are usually heavy on memory, because they must be

quite long to avoid repetitiveness. Using granular synthesis to cre-

ate such sounds from prerecorded or synthesized grains is a method

that is much lighter on memory and gives sound designers a lot of

freedom to modify the sound in multiple ways by modifying pa-

rameters of the synthesis [3].

Figure 1 summarizes the implementation of a simple granular

synthesizer. In granular synthesis signals are produced by mix-

ing grains. These grains are usually very short, in the range of

2 to 20 ms. The number of grains per second can be used as a

parameter to control the granularity of the sound. A low number

would allow the listener to perceive individual grains while a high

number would result in a large amount of grains overlapping each

other and create a signal close to white (or colored) noise. Before

mixing, grains are usually modified in a number of ways. In the

Figure 1: Summary of granular synthesis. Grains are at-
tenuated and randomly added to the final mix.

simplest case their amplitude is attenuated randomly. Depending

on the probability distribution of the attenuation factors, this can

have a very drastic effect on the granularity and tone color of the

produced sound. For a more detailed introduction to granular syn-

thesis refer to [4] or [5].

When using granular synthesis in video games, the synthesis

algorithm can be coupled to the physics engine to create realistic

sounds. To implement the sound of breaking rock, as introduced in

[3], we calculate the number of grains per second in the final mix

based on the number of collisions between rock fragments as calcu-

lated by the physics engine. Also the distribution of the attenuation

factors applied to the grains in the final mix is calculated based on

the magnitude of impacts in the physics engine. The sounds of rain

or running water can also be synthesized and controlled in a very

flexible way when using granular synthesis.

1.2. About the proposed system

One reason why granular synthesis does not find widespread use

in video games might be the necessity to record or synthesize ap-

propriate grains. Recording can be problematic if the underlying

single sound events are very quiet, like small rain droplets hitting

the ground, or if they are hard to isolate, like resonating air bubbles

in water. Synthesis can solve this problem in some cases, but de-

riving synthesis models to create appropriate grain sounds can be

a time consuming process. In addition such models are often very

hard to parametrize and control due to their level of abstraction.

In the system described in this paper grains are extracted auto-

matically from short recorded samples of granular sounds to avoid

the aforementioned issues. Using these grains, sounds that are very

close to the original samples can be reproduced. To furnish sound

designers with a straight-forward tool enabling them to design a

variety of granular sounds, we combine automatic grain extrac-

DAFX-1

http://dafx14.fau.de
mailto:siddsadj@square-enix.com

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

tion with sound morphing. By morphing between the grains that

have been extracted from two (or more) different recorded sam-

ples, sounds that lie perceptually at an arbitrary position between

these samples can be created. Although this approach has the lim-

itation that sound samples are needed to create sound - as opposed

to a system where grains are synthesized - it has the big advantage

that sound designers do not have to record grain sounds or deal

with complicated grain synthesis models. Instead they can use ex-

isting recordings of granular sounds as a starting point for sound

synthesis.

1.3. Related work

Several papers discuss automatic extraction of grains or other fea-

tures from granular sounds.

Bascou and Pottier [6] automatically detect the distribution and

pitch variation of grains in granular sounds. However, the grains

they are working with are extracted manually. Their algorithm

works by detecting pitch-shifted versions of these grains in the

spectrogram of a signal.

Lee et al. [7] extract grains from audio signals based on sudden

changes in the energy content of the spectrum, expressed as spec-

tral flux between neighbouring frames. These grains are then used

to resynthesize a signal in which the distribution of the extracted

grains over time can be modified. To fill gaps between grains that

are caused by a different distribution, grains are made longer by

using linear prediction. Gaps can also be filled by concatenating

similar grains. In their study grains do not overlap.

Schwarz et al. [8] extract grains from audio and arrange them

in multidimensional space according to several features describing

their tone color. Grains are extracted by splitting the input signal

at parts that are silent or based on high-frequency content of the

signal. The software tool CataRT [9], developed by the authors, al-

lows users to generate sound by navigation through the tone color

space, moving between groups of similar grains. This comes close

to morphing between sounds, but requires users to provide appro-

priate grains for all needed tone colors.

Lu et al. [10] implement sound texture synthesis using gran-

ular synthesis. They extract grains from an input signal based on

MFCC-similarity measurement between short frames. Grains are

varied in various ways during resynthesis to create variations of the

sound.

The extracted grains used by Lu et al. [10] are between 0.3 s

and 1.2 s long and thus much longer than the grains used in our

method. Also Fröjd and Horner [11] cut the input signal into grains

("blocks") with a comparatively large optimal length of 2 s. The

advantage of long grains as used in these studies is that micro struc-

tures of the sound can be captured in the grains. However, such

microstructures can not be changed during resynthesis.

1.4. Structure of this paper

The next section describes the technique used for automatic grain

extraction. Section 3 gives an overview on how sound can be syn-

thesized from the extracted grains. The method used for morphing

between granular sounds is described in section 4. Results of syn-

thesis andmorphing are reported in the last section. A link to sound

samples is provided.

2. AUTOMATIC GRAIN EXTRACTION

2.1. Noise subtraction

In granular sounds that consist of a very dense pattern of grains,

most of these converge to noise and only the louder ones can be per-

ceived separately. To improve the quality of the extracted grains,

we first remove this noise by spectral subtraction (see [12] for a

detailed introduction).

To determine the spectrum of the noise to be removed, the sam-

ple is first cut into overlapping frames. We use frames of 1024

samples that are extracted from the signal at increments of 32 sam-

ples. The reason for choosing a small increment is to maximize the

number of extracted frames, since the loudest 85 % of all frames

are rejected later. This was found to be a simple measure to reduce

the number of frames containing loud and short bursts, which are

typically found in granular sounds. A small overlap is also needed

to ensure quality in the resynthesized signal after noise subtraction.

After applying a Hamming window each frame is transformed to

the frequency domain using a FFT of sizeNfft, which is equal to the

frame length. Then the amplitude spectrum of each frame is cal-

culated. The spectra are smoothed by applying a FIR filter whose

impulse response is a Gaussian calculated by the equation

h[n] = a · e−
(n−b)2

2c2 , (1)

where n = [0, 1, ..., 33], a is a normalization constant so that∑
h[n] = 1, b = 16 and c = 3.
The energy e[m] of each framem is calculated as

e[m] =

Nfft/2+1∑
n=0

Sa[m,n]2, (2)

where Sa[m,n] is the amplitude of the frequency bin n in the

smoothed spectrum of framem.

To avoid loud sound events that distort the extracted noise spec-

trum, only the quietest 15 % of all frames are used to calculate the

noise spectrum Sn, which is calculated as the average amplitude

spectrum of these frames.

To reconstruct the signal with reduced noise, the noise spec-

trum Sn is first subtracted from the amplitude spectra Sa of each

frame, setting all bins to zero where the amplitude of the noise

spectrum is higher:

S′
a[m,n] =

 Sa[m,n]− Sn[n], if Sa[m,n] > Sn[n]

0, if Sa[m,n] ≤ Sn[n]

(3)
Then the amplitude spectra with reduced noise S′

a are applied

to the complex FFT coefficients S[m,n] of each frame after nor-

malizing them.

Sc[m,n] = S′
a[m,n]

S[m,n]

Sa[m,n]
,where n = 0, 1, ..., Nfft/2 (4)

The second half of the FFT coefficients, i.e. the frequency binsn =
Nfft/2 + 1, ..., N − 1 of all frames are obtained by mirroring the

complex conjugate:

Sc[m,n] = S∗
c [m,Nfft − n],where n =

Nfft

2
+ 1, ..., Nfft − 1

(5)

DAFX-2

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 2: Extraction of a grain from granular sound. The
extracted grain (solid rectangle) is found between the bound-
aries of the window (dotted lines) placed around the maxi-
mum of the envelope (solid curve).

The resulting complex spectra are then transformed to the time do-

main using the inverse FFT and overlapped according to the way

the frames where extracted initially, which yields the signal with

reduced noise sc[t].
The noise spectrum Sn is also used when resynthesizing the

sound and when morphing between different sounds.

2.2. Grain extraction

The grains are extracted from the loudest parts of the signal sc[t].
The loudest parts are found by looking at its smoothed envelope g[t].
The envelope g′[t] is obtained using ŝc[t], the Hilbert transform of

the signal and its complex conjugate ŝ∗c [t]:

g′[t] =
√

ŝc[t] · ŝ∗c [t] (6)

The smoothed envelope g[t] is obtained by applying a moving av-

erage of length 100.

As is shown in figure 2, the first grain is extracted from a win-

dow around the index τ , which is the position of the global max-

imum of the envelope. The index ts of the first sample to be ex-

tracted and the index te of the last sample are determined by finding

the minima of the envelope that lie within a certain window around

τ . The window is defined by the variables ws and we, which de-

note the maximum number of samples between τ and the start or

the end of the window respectively. The grain is thus extracted

between

ts = min(g[t] : τ − ws ≤ t < τ) and (7)

te = min(g[t] : τ < t ≤ τ + we). (8)
The grain is stored in the grain waveform table but deleted

from the signal sc[t] and the envelope env[t] by setting both in

the range [ts, te] to zero. After this deletion the same algorithm is

reiterated to find the next grain. This is repeated until the user spec-

ified number of grains have been extracted or until the envelope is

all zero.

To reduce unwanted noise during later synthesis, the start and

end of all extracted grains are attenuated gradually so that jumps

in the final mix are avoided. This is done by attenuating with the

envelope a, which is defined as

a[t′] =


4

√
t′

τ−ts
, for ts ≤ t < τ

4

√
1− t−τ

te−τ
, for τ ≤ t ≤ te

(9)

where t′ = t− ts.

3. SOUND SYNTHESIS USING EXTRACTED
GRAINS

To synthesize sound of arbitrary length that is similar to the orig-

inal sound from which noise and grains were extracted, we first

synthesize noise according to the noise spectrum Sn, which was

extracted as described in section 2.1. Then we add the extracted

grains to the noise signal.

The noise is generated by shaping white noise according to the

extracted noise spectrum Sn using multiplication of the spectra in

the frequency domain. After generating a block of white noise of

length Nfft/2, i.e. half the length of the FFT used when creat-

ing the noise spectrum to avoid aliasing, it is padded with zeros

to form a block of Nfft samples and transformed to the frequency

domain using the FFT, yielding the frequency domain white noise

signal R′[n]. Since the time domain signal was real valued, R′[n]
is symmetric and the multiplication only has to be applied to the

first half:

R[n] = Sn[n]R
′[n],where 0 ≤ n ≤ Nfft/2 (10)

The product of this multiplication is mirrored to form the second

half of the frequency domain representation

R[n] = R∗[Nfft − n],where Nfft/2 < n < Nfft (11)

The shaped noise is obtained by transforming R[n] back to the

time domain. To create longer noise signals, multiple white noise

buffers of lengthNfft/2 have to be processed in this way and over-
lapped with lengthNfft/2 after transformation to the time domain.

After creating noise, the extracted grains are added. Adding

the grains at the same positions from which they were extracted

with their original amplitude will create a signal that is very close to

the original - not only acoustically, but also with regard to the actual

waveform. However, to synthesize a signal that sounds similar to

the original the grains do not need to be distributed in the exact

same way as they were in the original. Instead, grains are placed

randomly in the synthesized sound.

Especially when working with few extracted grains, repetitive-

ness can be avoided when the amplitude of the grains in the synthe-

sized signal is varied randomly. To create a sound that resembles

the original this variation should follow the same loudness distri-

bution as the grains in the original sound. This can be achieved

by the following method: Before synthesis all grains are normal-

ized, so that their amplitude is one, but their original amplitude is

stored in a separate array. During synthesis each grain is attenu-

ated with an amplitude that is randomly drawn from the array of

amplitudes. Alternatively random numbers can be drawn from a

probability distribution that matches the original grain amplitude

loudness distribution. Depending on the nature of the sound big

variations in the loudness of the grains might not be desirable, be-

cause the tone color of quiet and loud grains are different. In such

cases small variation of the original amplitude can help to prevent

repetitiveness in the synthesized sound.

However, since not all grains can be extracted during grain ex-

traction, synthesis that is only based on the number of grains ex-

tracted per second and their loudness distribution can yield very un-

satisfactory results. Modifying these parameters can increase the

quality of the synthesized sound. This also gives sound designers

more control over the produced sound. They can modify the sound

by varying the loudness of the noise, the loudness distribution of

DAFX-3

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 3: Gradual morphing (left) and blending (right) be-
tween the two spectra at the top and bottom of the graphs.
Note how formants move along the frequency axis when mor-
phing.

the grains and the number of grains per second. Finding appro-

priate values for these parameters is an important step in creating

realistic sound.

Some granular sounds are the result of thousands of grains

sounding at the same time. When synthesizing such sounds the

noise component plays a significant role in recreating a realistic

signal, but also grains should be layered on top of each other. The

number of grains extracted per second only reflects the number

of a few loud grains that were detected, but the number of grains

actually sounding per second can be much higher. In such cases re-

alism can be greatly increased by adding a higher number of grains

to the final mix, attenuating grains with a loudness distribution that

favours small amplitudes.

Section 5 presents some synthesis results along with the con-

figurations used to create them.

4. MORPHING OF GRANULAR SOUNDS

4.1. Morphing vs. Blending

Noise and grains that are extracted from two different granular

sounds can be combined in different ways. The straight-forward

way of taking the (weighted) average of the noise spectra and using

grains from both sounds will yield a sound that corresponds more

to mixing both original sounds than to creating a sound whose tone

color lies perceptually between the original sounds. This can be

desirable when blending between one sound to the other sound.

However, tomorph between the original sounds as described in

section 1.2, i.e. to create a sound whose tone color lies between the

original sounds, a different method must be used. One important

manifestation of tone color is the shape of the spectrum of a sound

because the distribution of energy over the frequency components

of a sound plays an important part in tone color perception [13]. In

the noise spectra in figure 3 the different energy distributions can

clearly be seen. To gradually morph the tone color of one sound to

the other sound it is necessary to move the formant(s) of one spec-

trum to the positions of the formant(s) in the other spectrum, also

changing their shape gradually. Taking averages of both spectra

with gradually changing weights, as shown in the right side of the

figure, does not have this effect. Morphing between two spectra is

shown in the left side of the figure.

The next sections describe the technique used for morphing

and its application to granular sounds. This technique is applied

to the noise and the grains extracted from the input sounds as de-

scribed earlier.

4.2. Morphing of spectra

Shifting the formants of some spectrum A to the location of the

formants of another spectrum B is essentially the same as redis-

tributing the energy in spectrum A so that it resembles the energy

distribution in spectrum B. The method used to achieve this was al-

ready introduced in an earlier publication [1], but for completeness

we reproduce its explanation here.

We can express the energy distribution over the samples of an

power spectrum by its integral. The integral of the power spec-

trum s(ω) where ω = [0;Ω],

S(ω) =

ω∫
0

s (θ) dθ, (12)

expresses the energy between frequency ω and zero frequency. In

other words, S(ω) is the cumulative energy of the spectrum.

We use the normalized cumulative energy of two spectra to

match frequencies of the same cumulative energy and to find a

spectrum with an intermediary energy distribution. To normalize

we first remove any zero offset of the power spectrum

s0(ω) = s(ω)− min(s) (13)

and then divide by the cumulative energy of s0 at ω = Ω, which
corresponds to the integral:

snorm (ω) = s0(ω)/

Ω∫
0

s0 (θ) dθ (14)

Then we calculate the integral of snorm

Snorm(ω) =

ω∫
0

snorm (θ) dθ (15)

whose maximum value Snorm(Ω) = 1 due to the normalization.

We do this for the two spectra a(ω) and b(ω) to get the nor-

malized cumulative power spectra A(ω) and B(ω), keeping the

normalization parameters

pa = min(a), (16)

pb = min(b), (17)

qa =

Ω∫
0

a0 (θ) dθ and (18)

qb =

Ω∫
0

b0 (θ) dθ. (19)

We interpolate by first finding frequencies ωa and ωb in spec-

tra A and B where the cumulative energy is equal to an arbitrary

level y. In the interpolated spectrum, the frequency ωab where the

cumulative energy reaches y should lie between ωa and ωb. We

calculate this frequency as ωab = v · ωa + (1 − v) · ωb with v in

DAFX-4

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

cumulative
sum cumulative

sum

inverse inverse
inverse

difference

Figure 4: Summary of the spectra morphing algorithm. Fol-
low the arrows to read the figure. Given the two power
spectra a(ω) and b(ω), their cumulative power spectra A(ω)
and B(ω) are calculated. These are inverted to functions
of cumulative energy, A−(y) and B−(y). Their average
X−

ab(y) is inverted back to a function of frequency yielding
the cumulative sum Xab(ω), which is differentiated to get
the morphed spectrum xab(ω).

the range [0; 1] expressing the desired similarity of the interpolated

spectrum to A. This is the same as calculating the weighted aver-

age along the frequency axis between the cumulative energy curves

of spectrum A and B. We therefore need to invertA(ω) andB(ω),
which are functions of the frequencyω, toA−(y) andB−(y)which
are functions of the cumulative energy y. We then calculate the

weighted average of these inverses and get

F−
ab (y) = v ·A−(y) + (1− v) ·B−(y) (20)

which is the inverse of the cumulative energy. Inverting and differ-

entiating this function gives us the normalized interpolated power

spectrum fabnorm . To denormalize the spectrum we use the nor-

malization parameters mentioned above and get

fab = (vqa + (1− v)qb) ·Xabnorm + vpa + (1− v)pb. (21)

For implementation we need to consider discrete spectra. Sup-

posing fnorm[n] is a discrete normalized power spectrum, the cu-

mulative energy is calculated as the cumulative sum of its samples:

Fnorm[n] =

n∑
i=0

fnorm[i] (22)

To calculate its inverse we interpolate frequency values at arbi-

trary energy intervals. By varying the size of the interval we can

control the quality of the output. After calculating the weighted

average of the interpolated inversions we need to invert (interpo-

late) this average again to get the cumulative power spectrum as a

discrete function of frequency. Calculating the difference between

succeeding elements (f [n] = F [n]−F [n−1]) allows us to get the
normalized interpolated power spectrum. After denormalizing in

the same fashion as for continuous spectra, we get the interpolated

power spectrum. The implementation is summarized in figure 4.

4.3. Morphing of noise spectra

The noise spectra of both sounds are morphed according to the al-

gorithm described above. The resulting spectrum is used to shape

the white noise as described in section 3.

4.4. Morphing of grains

4.4.1. Overview

The morphing of grains is not as straight forward as the morphing

of the noise spectra: There are several grains for each sound, so

before morphing it must be decided between which grains of sound

A and which grains of sound B morphing should be conducted.

Additionally grains are waveforms and cannot be represented by a

single power spectrum, because temporal information of the signal

would be lost.

The next paragraph describes how grains are first paired and

then cut into frames and morphed.

4.4.2. Pairing grains

Wewant to morph between similar grains, so we need to find a way

to measure the distance between two grains based on their similar-

ity. This measurement is based on the spectral shape, which is one

feature of the tone color. The distance ismeasured by the difference

in the energy distribution between the frequency spectra of two

grains. To calculate the difference between grains A and B, the fre-

quency spectra are calculated over the whole length of both grains

by first dividing the grains into overlapping frames of length L =
256 samples, extracted at increments of d = 16 samples to en-

sure a high time resolution, before transforming them to the fre-

quency domain. The frames are padded with zeros to form blocks

of length Nfft = 2L before applying the FFT. This extra space is

needed to avoid aliasing caused by later multiplication in the fre-

quency domain. Applying the FFT of length Nfft to frame mA
of grain A yields the complex FFT coefficientsXA[mA, n]. From
these coefficients power spectra are calculated for each frame using

the formula

EA[mA, n] = |XA[mA, n]|2, for 0 ≤ n ≤ Nfft/2, (23)

whereEA[mA, n] are the resulting power spectra. The power spec-
trumEA[n] representing the whole grain is calculated by averaging
all power spectra of the grain. The same calculations are executed

for grain B.

The distance between both grains is calculated as the differ-

ence between the energy distribution of the power spectra EA[n]
and EB[n]. As in section 4.2, the energy distribution is expressed

by the normalized cumulative sum of the power spectra

SA[n] =

n∑
i=0

EA[i]/
∑

EA[i] (24)

and SB[n] which is calculated similarly. The difference in the en-

ergy distribution is measured by calculating the size of the area

between the graphs of SA[n] and SB[n] as shown in figure 5.
Once the distances between all grains of sound A to all grains

of sound B have been calculated, grains are paired using a varia-

tion of the stable marriage problem. Since the number of grains

of both sounds is not necessarily equal, grains of the sound with

more grains can be paired with more than one grain of the other

DAFX-5

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 5: The distance between the two spectra in the upper
plot is measured by calculating the size of the area between
the lines representing the cumulative sum of the spectra, as
shown in the lower plot.

sound. The following explanation uses the metaphor of compa-

nies (grains of the sound with more grains) and applicants (grains

of the sound with less grains) to avoid venturing into the domain

of polygamy. Two grains are considered to be a good match if

their distance is small. Since the number of companies Nco and

the number of applicants Nap is not equal, every company has to

hire N = Nco/Nap candidates on average so that all applicants

are hired. The maximum number Nmax of candidates a company

can hire is fixed at the integer above N : Nmax = dNe.
Each iteration every applicant without a job offer applies at

his most preferred company among the companies he has not yet

applied at. After all applicants have filed applications, companies

which have more than Nmax applicants reject the worst matching

applicants, keeping only Nmax applications. These matches are

tentative and can be rejected in the next iteration.

The globally worst matching applications of all companies are

also rejected until the average number of applicants per company

is equal to or lower than N . The algorithm is reiterated until all

applicants are employed by a company.

Every grain in the applicant group thus has one match in the

company group. Every grain in the company group has one ormore

matches in the applicant group, but is only paired with the best

matching applicant.

4.4.3. Implementation of grain morphing

Once each grain of sound A is linked to a similar grain in sound B

and vice-versa, morphing between two paired grains A and B can

be considered.

As mentioned before, frames are extracted from the grains.

Since the number of frames in grain A (MA) and the number of

frames in grain B (MB) are not necessarily equal due to differing

length of grains A and B, frames need to be aligned in a certain way.

For the morphing of grains linear alignment yielded good results.

The number of frames MAB in the morphed sound is determined

byMAB = round((1− v)MA + vMB), where v is again the mor-

phing factor (see section 4.2). The calculation of frame m of the

morphed sound is based on framemA andmB of sounds A and B

respectively, which are chosen using the following formula:

mA = round(MA ·m/MAB) (25)

mB = round(MB ·m/MAB) (26)
Morphing is conducted between the power spectraEA[mA, n]

and EB[mB, n] of the aligned frames mA and mB, which results

in the morphed power spectrum EAB. Since power spectra do

not contain information about the phase of the signal, this infor-

mation has to be extracted from the FFT coefficients XA[mA, n]
andXB[mB, n]whichwere calculated earlier for framesmA andmB
respectively. The phase is retained in the normalized complex spec-

tra CA and CB which are calculated from the complex FFT coef-

ficients. The formula to calculate the normalized complex spec-

trum CA is

CA[mA, n] =
SA[mA, n]

|SA[mA, n]|
, where 0 ≤ n ≤ Nfft/2. (27)

The spectrum CB is calculated in the same way.

The morphed power spectrumEAB is then applied to the com-

plex spectraCA andCB of the aligned frames of both sounds to cal-

culate the morphed spectrum SAB of framem, which is a weighted

average of both sounds:

SAB[m,n] = (1− v) · CA[mA, n] ·
√

EAB[m,n]

+v · CB[mB, n] ·
√

EAB[m,n],
(28)

where 0 ≤ n ≤ Nfft/2.
The morphed spectrum is mirrored to obtain a complete set of

FFT coefficients:

SAB[m,n] = S∗
AB[m,Nfft − n],where Nfft/2 < n < Nfft

(29)
Then it is transformed to the time domain with the inverse FFT to

obtain a time domain signal representation of the morphed frame.

Finally, to form the final output of the morph, the frames are over-

lapped with spacing their start points at intervals of d samples,

which is the same spacing used during frame extraction. When

overlapping the frames a window function can be applied. A Hann

window of length Nfft/2 followed by Nfft/2 zeros - by which the

second half of the signal is discarded - yielded good results.

4.5. Real-time implementation

Although sound morphing can easily be implemented in real-time

using the method described above (see [1] for further details), the

high number of grains (around 200-500 per sound) make real-time

implementation very difficult for synthesized granular soundswhen

grainmorphing is conducted at run-time. This is whymorphing be-

tween grains is executed before run-time instead. To enable users

to create a sound with a tone color that lies at an arbitrary position

between sound A and B, or - in other words - to create a sound

corresponding to an arbitrary value of v ∈ [0; 1] (as introduced in

section 4.2), several sets of grain morphs for several values of v are
prepared. The higher the number of grain morph sets, the higher

is the smoothness of the morph between the two granular sounds.

To implement a system having a resolution of ten sets, eight grain

morphs with v = 0.1; 0.2...0.9 can be created and stored in mem-

ory in addition to the original grains of sounds A and B correspond-

ing to v = 0 and v = 1 respectively. At runtime grains are chosen

randomly from the sets closest to a given v value. The morphing

of a single spectrum, however, is very cheap, so morphing of the

noise can be done in real-time.

DAFX-6

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

Figure 6: Spectrogram of recording of rain sound (left) and
synthesized rain sound (right).

Figure 7: Spectrogram of recording of water sound (left) and
synthesized water sound (right).

5. RESULTS

5.1. Synthesis

Realistic granular sounds that bear all the characteristics of the

originals can be synthesized by extracting grains and noise from

short samples of only a few seconds length. The sounds shown in

figures 6 and 7 were created by extracting grains and noise from

sample recordings of 3 seconds (water) or 5 seconds (rain).

For both sounds grains were normalized after extraction and

attenuated by a random factor during synthesis. The random atten-

uation factors were drawn from a normal distribution with µ = 0
and σ = 3, which also yielded negative attenuation factors. This

increased the variation of the signal, since the amplitude of some

grains was inverted.

To recreate a sound close to the original, the number of grains

per second was set to 100, which corresponded approximately to

the number of grains that was extracted from one second of the

original sounds.

5.2. Morphing

The proposed algorithm works well for morphing between differ-

ent sounds of rain or running water and yields realistic sounding

Figure 8: Spectrogram of two sounds being morphed. Note
how the formant slides between the positions in both sounds.

results even when grains are extracted from only short sounds of

only a few seconds length.

Figure 8 shows the morph between two sounds synthesized

from a recording of glass shards falling on a hard surface and a

bubbling thick liquid. The spectral energy distribution is gradually

changing between both sounds.

Morphing between very different sounds, like rain and fire-

works, does not give very realistic results. However, this does not

necessarily highlight a flaw in the proposed method, since such

sounds do not exist in nature either.

5.3. Sound samples

Sound samples for synthesized sounds and morphed sounds can be

found online1.

6. FUTURE WORK

Apart from some necessary quality improvements in the grain ex-

traction algorithm, there ismuch scope for enhancing the extraction

of other features of the granular source sounds. These include the

actual number of grains per second, the amplitude distribution of

the grains or the temporal distribution of grains.

To consider granular sounds in which features change with

time, like water splashes or breaking objects, temporal changes in

the extracted parameters also need to be extracted.

7. REFERENCES

[1] Sadjad Siddiq, ``Morphing of impact sounds,'' in Proceed-

ings of the 139th Audio Engineering Society Convention. Au-

dio Engineering Society, 2015, to be published.

[2] William Moss, Hengchin Yeh, Jeong-Mo Hong, Ming C

Lin, and Dinesh Manocha, ``Sounding liquids: Automatic

sound synthesis from fluid simulation,'' ACM Transactions

on Graphics (TOG), vol. 29, no. 3, pp. 21, 2010.

1See http://www.jp.square-enix.com/info/library/pri-
vate/granularMorphing.zip. The password of the zip-file is
”gmorph2015”.

DAFX-7

http://www.jp.square-enix.com/info/library/private/granularMorphing.zip
http://www.jp.square-enix.com/info/library/private/granularMorphing.zip

Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

[3] Sadjad Siddiq, Taniyama Hikaru, and Hirose Yuki,

``当たって砕けろッ！プロシージャルオディ制作
(Go for broke! Creation of procedural audio content),''

Presentation at the Computer Entertainment Developers

Conference, 2014, Slides and sound samples are available

at http://connect.jp.square-enix.com/?p=2639
(visited on 25.9.2015).

[4] Curtis Roads, Microsound, MIT press, 2004.

[5] Øyvind Brandtsegg, Sigurd Saue, and Thom JOHANSEN,

``Particle synthesis--a unified model for granular synthe-

sis,'' in Proceedings of the 2011 Linux Audio Conference.

(LAC'11), 2011.

[6] Charles Bascou and Laurent Pottier, ``New sound decompo-

sition method applied to granular synthesis,'' in ICMC Pro-

ceedings, 2005.

[7] Jung-Suk Lee, François Thibault, Philippe Depalle, and

Gary P Scavone, ``Granular analysis/synthesis for simple and

robust transformations of complex sounds,'' in Audio Engi-

neering Society Conference: 49th International Conference:

Audio for Games. Audio Engineering Society, 2013.

[8] Diemo Schwarz, Roland Cahen, and Sam Britton, ``Prin-

ciples and applications of interactive corpus-based concate-

native synthesis,'' Journées d'Informatique Musicale (JIM),

GMEA, Albi, France, 2008.

[9] Diemo Schwarz, Grégory Beller, Bruno Verbrugghe, Sam

Britton, et al., ``Real-time corpus-based concatenative syn-

thesis with catart,'' in Proceedings of the COST-G6 Confer-

ence on Digital Audio Effects (DAFx), Montreal, Canada.

Citeseer, 2006, pp. 279--282.

[10] Lie Lu, Liu Wenyin, and Hong-Jiang Zhang, ``Audio tex-

tures: Theory and applications,'' Speech and Audio Process-

ing, IEEE Transactions on, vol. 12, no. 2, pp. 156--167, 2004.

[11] Martin Fröjd and Andrew Horner, ``Sound texture synthesis

using an overlap-add/granular synthesis approach,'' J. Audio

Eng. Soc, vol. 57, no. 1/2, pp. 29--37, 2009.

[12] Saeed V Vaseghi, Advanced digital signal processing and

noise reduction, John Wiley & Sons, 2008.

[13] Hermann Ludwig Ferdinand von Helmholtz, Die Lehre von

den Tonempfindungen als physiologische Grundlage für die

Musik, Vieweg, 1863.

DAFX-8

http://connect.jp.square-enix.com/?p=2639

	1 Introduction
	1.1 Granular synthesis in video games
	1.2 About the proposed system
	1.3 Related work
	1.4 Structure of this paper

	2 Automatic grain extraction
	2.1 Noise subtraction
	2.2 Grain extraction

	3 Sound synthesis using extracted grains
	4 Morphing of granular sounds
	4.1 Morphing vs. Blending
	4.2 Morphing of spectra
	4.3 Morphing of noise spectra
	4.4 Morphing of grains
	4.4.1 Overview
	4.4.2 Pairing grains
	4.4.3 Implementation of grain morphing

	4.5 Real-time implementation

	5 Results
	5.1 Synthesis
	5.2 Morphing
	5.3 Sound samples

	6 Future work
	7 References

