
Fast Global Illumination Baking via Ray-Bundles (sap 0046)

Yusuke Tokuyoshi∗

Square Enix Co., Ltd.
Takashi Sekine†

Square Enix Co., Ltd.
Shinji Ogaki‡

Square Enix Co., Ltd.

Figure 1: Left: real-time rendering using light maps (122640 triangles scene). Right: the light maps generated by our renderer (1024×1024
pixels per image). The total rendering time for the light maps is 181 seconds (ray-bundle resolution: 2048×2048 pixels, 10000 directional
samples, GPU: NVIDIA GeForce GTX 580).

1 Introduction

In interactive applications such as video games, light maps are of-
ten used to generate realistic images. However, baking light maps
is time consuming because it is necessary to compute global illu-
mination. This sketch presents a simple and fast rendering system
for light maps. Our system exploits ray-bundles on DirectX R©11
capable GPUs and outperforms ray tracing based methods. Fur-
thermore, it supports tessellation for DirectX 11 games.

1.1 Related Work

Ray-bundles The use of global ray-bundles was introduced by
Sbert [1996]. Szirmay-Kalos and Purgathofer [1998] used global
ray-bundles for global illumination algorithm based on finite ele-
ments. They compute radiance exchange between visible surfaces
using rasterization. Hachisuka [2005] proposed ray-bundles using
rasterization for final gathering. To obtain each depth fragment,
depth peeling [Everitt 2001] was used. Hermes et al. [2010] used
k-buffer [Callahan et al. 2005] and they demonstrated high-quality
global illumination with multiple glossy reflections using their ra-
diance exchange.

Per Pixel Linked-list Everitt [2001] introduced a multi-pass ren-
dering method called depth peeling for order independent trans-
parency. Ideally, we would need to store a list of fragments per
pixel as A-buffer [Carpenter 1984] in a single-pass. Callahan et
al. [2005] proposed k-buffer. Although it can be created in a
single-pass, the number of fragments per pixel is fixed. Yang et
al. [2010] introduced a method to dynamically construct highly
concurrent linked-list on DirectX 11 GPUs. This method is faster
than depth peeling for calculating order independent transparency,
and provides unlimited storage per pixel unlike k-buffer. However,
the fragments in the list need to be sorted for order independent
transparency.

Tessellation DirectX 11 GPUs support hardware tessellation. It
enables real-time graphics to use arbitrary tessellation methods.
However, it is not easy for offline rendering. In order to obtain
exactly the same appearance both in real-time graphics and offline
rendering, offline renderers and real-time rendering engines have to
use the same tessellation method. The simplest solution is to first
tessellate the polygons. However, this is memory consuming. A

∗e-mail:tokuyosh@square-enix.com
†e-mail:sekine@square-enix.com
‡e-mail:ogaki@square-enix.com

complex and costly out-of-core rendering system may be needed.
Direct ray tracing [Smits et al. 2000; Ogaki and Tokuyoshi 2011] is
one of the solutions, but arbitrary tessellation methods are still dif-
ficult. Our renderer is able to support the same tessellation methods
for real-time graphics without a complex implementation.

2 Method

2.1 Ray-Bundle Tracing on the GPU

Our algorithm is based on ray-bundle tracing. It focuses on a sin-
gle global direction, and computes the visibility for all fragments
in a scene in parallel as shown Figure 2 (left). This can be done by
rendering the scene from the sample direction using parallel pro-
jection, similar to rendering a shadow map from a directional light
source. In this pass, the fragment data is stored to a buffer. Then,
in the next pass, the radiance of a fragment is obtained from the
buffer for each shading point. We create ray-bundles using per pixel
linked-list construction on DirectX 11 GPU [Yang et al. 2010]. For
opaque objects, this can be done much faster because there is no
need to sort the fragments unlike order independent transparency.

2.2 Radiance Exchange

We solve the light transport problem by radiance exchange de-
scribed in [Hermes et al. 2010]. They used texture atlas for in-
termediate data structures, whereas we use light maps directly. The
light maps are updated in an iterative fashion. The light transfer is
computed between all pairs of successive points. These pairs can be
found using ray-bundles (see Figure 2). Let x1 and y1 be a pair of
successive points. The pixel corresponding to x1 in the light maps
is updated using the radiance at y1. The approximated radiance at
y1 can be obtained by light maps computed in the previous itera-
tion. Similarly, the pixel corresponding to y1 in the light maps is
updated using the previous radiance at x1. Although this updat-
ing scheme is a biased method, it allows an arbitrary number of
interreflections and converges to the truth. The weight of a bounce
is reduced according to number of interreflections. Therefore, the
bias at the ith bounce is given by:

Bi ∝ min
(
i

m
, 1
)
ρi, (1)

where m is the number of samples and ρ the albedo of surfaces.
Since we can assume ρ < 1 in most scenes, the bias converges to
zero.



Ray-bundle Light map

Figure 2: Ray-bundle tracing and radiance exchange. The sample
direction is randomly generated and the light maps are updated in
an iterative fashion. A ray-bundle is created as a per pixel linked-
list in each iteration. And light transport is computed by looking up
the radiance of visible fragments from the light maps which were
computed in the previous iteration.

2.3 Sampling of Ray Directions

Ray-bundles transfer radiance not only into the direction ω, but also
into −ω. If the orientation is sampled uniformly, then its probabil-
ity density function is p(ω) = 1/2π. When a scene is lit by an
environment map, importance sampling is done according to the
emitted radiance of the environment map to reduce variance. We
calculate the probability density function as follows:

p(ω) =
Le(ω) + Le(−ω) + 2Lo∫

Ω
Le(ω′) + Lodω′

, (2)

where Le(ω) is the emitted radiance from the direction ω of the
environment map and Lo is the user-specified offset to account for
indirect illumination.

2.4 Tessellation

Since our visibility test is done by rasterization on DirectX 11 GPU,
our baking system can easily utilize hardware tessellation. In addi-
tion, the domain shader can be shared with the real-time rendering
engine. Therefore, we are able to render highly tessellated scene
without complex implementation such as an out-of-core algorithm.

3 Results

Figure 1 shows generated light maps. The scene contains 122640
triangles. 7 high-quality light maps are rendered in 181 seconds
with NVIDIA GeForce GTX 580. The resolution of ray-bundle is
2048×2048 pixels, and 10000 directions are sampled. The perfor-
mance of our renderer is over 200 M rays per second on a commod-
ity GPU.

4 Discussion and Future Work

The computational complexity of our method is O(mn), where m
is the number of samples and n is the number of primitives. On the
other hand, the complexity of general ray tracing based algorithms
isO((n+m) logn), because the acceleration structure construction
needs O(n logn), and ray tracing needs O(m logn). Therefore, in
the case of enormously high-polygon scenes with a huge number of
samples, our method may be slower than general ray tracing based
methods. However, in real-time applications such as games, the

number of primitives is limited by memory size and run-time per-
formance. If a scene is highly tessellated, ray tracing based system
may need to use slow direct ray tracing methods or out-of-core al-
gorithms. On the other hand, the use of hardware tessellation is
simple and fast. For most scenes, we can achieve sufficient quality
with less than 10 thousand samples and our system outperforms ray
tracing based baking systems.

Currently, our renderer only supports lambertian materials. How-
ever, we can use arbitrary BRDFs with a slight modification as
shown in [Hermes et al. 2010]. Ray-bundle based methods are weak
in computing highly glossy reflections, especially perfect specu-
lar surfaces. If a scene has perfect specular surfaces, we must use
ray tracing based methods for caustics. Since our renderer entirely
works on the GPU, ray (or photon) tracing can be executed on the
CPU in parallel.

If a scene is vast, artifacts may occur since the resolution of ray-
bundles is limited by memory size. This problem is addressed by
tiling [Thibieroz 2011]. We would like to investigate its effective-
ness.

Acknowledgements

The authors would like to thank Toshiya Hachisuka, Arun Mehta
and Fabien Gravot for valuable comments, and Takashi Sugata for
providing the models.

References

CALLAHAN, S. P., IKITS, M., COMBA, J. L. D., AND SILVA,
C. T. 2005. Hardware-assisted visibility ordering for unstruc-
tured volume rendering. IEEE Transactions on Visualization and
Computer Graphics 11, 3, 285–295.

CARPENTER, L. 1984. The a-buffer, an antialiased hidden surface
method. SIGGRAPH Comput. Graph. 18, 3, 103–108.

EVERITT, C. 2001. Interactive order-independent transparency.
Tech. rep., NVIDIA Corporation.

HACHISUKA, T. 2005. High-quality global illumination rendering
using rasterization. In GPU Gems 2. Addison-Wesley Profes-
sional, ch. 38, 615–634.

HERMES, J., HENRICH, N., GROSCH, T., AND MUELLER, S.
2010. Global illumination using parallel global ray-bundles. In
Vision, Modeling and Visualization.

OGAKI, S., AND TOKUYOSHI, Y. 2011. Direct ray tracing of
phong tessellation. Comput. Graph. Forum 30, 4, 1337–1344.

SBERT, M. 1996. The Use of Global Directions to Compute Ra-
diosity - Global Monte Carlo Techniques. PhD thesis, Catalan
Technical University.

SMITS, B., SHIRLEY, P., AND STARK, M. M. 2000. Direct ray
tracing of smoothed and displacement mapped triangles. Tech.
rep.

SZIRMAY-KALOS, L., AND PURGATHOFER, W. 1998. Global
ray-bundle tracing with hardware acceleration. In in Rendering
Techniques ’98, Springer, 247–258.

THIBIEROZ, N. 2011. Order-independent transparency using per-
pixel linked lists. In GPU Pro 2. AK Peters, ch. VII,2, 409–431.

YANG, J. C., HENSLEY, J., GRÜN, H., AND THIBIEROZ, N.
2010. Real-time concurrent linked list construction on the gpu.
Comput. Graph. Forum 29, 4, 1297–1304.


