
A MIS and AMIS

A.1 Multiple Importance Sampling

Multiple importance sampling (MIS) is a strategy to combine sev-
eral sampling models using a weighting function. The weighting
functionwt(ω) of the tth sampling model using balance heuristic
is given as

wt(ω) =
Ntpt(ω)∑T−1

k=0 Nkpk(ω)
, (A.1)

whereω is a sample point (in our case, ray direction),Nt the num-
ber of samples,pt the PDF, andT the number of sampling models.

A.2 Adaptive Multiple Importance Sampling

AMIS is aimed at optimally recycling past simulations in an itera-
tive importance sampling scheme. The difference to earlier adaptive
importance sampling methods is that the past weighting functions
are recomputed by MIS at each iteration. Aftert iterations, the
weighting functionwj(ω) (0 ≤ j ≤ t) is given as

wj(ω) =
Njp(ω; θ̂j)∑t

k=0 Nkp(ω; θ̂k)
, (A.2)

where the PDFp at thejth iteration is parameterized bŷθj . The
next parameter̂θt+1 is estimated from past samples. It will be de-
scribed in next section. Letf(ω) be the integrand, a weighted value
of ith sample atjth iteration is obtained as

si,j = wj(ωi,j)
f(ωi,j)

Njp(ωi,j ; θ̂j)
. (A.3)

And, the integral is estimated as

∫
Ω

f(ω)dω ≈
t∑

j=0

Nj−1∑
i=0

si,j . (A.4)

The performance of AMIS depends on an updating scheme. In this
paper, we propose an appropriate method for final gathering.

B Estimation of Optimal Parameter

We estimate the optimal̂θt+1 from pastt samples with MLE. In
this paper, we use following likelihood function:

Lt(θ) =
t∏

j=0

Nj−1∏
i=0

p(ωi,j ;θ)
si,j . (B.1)

By maximizingLt(θ), we obtainθ̂t+1. For convenience, we use
the log-likelihood function given as

lt(θ) =
t∑

j=0

Nj−1∑
i=0

si,j log p(ωi,j ;θ)

=

t∑
j=0

Nj−1∑
i=0

si,j log(
α+ 1

2
|ωi,j · n|α) (B.2)

=

t∑
j=0

Nj−1∑
i=0

si,j log(
α+ 1

2
) + αsi,j log |ωi,j · n|.

Solving

0 =
∂lt(θ)

∂α
=

t∑
j=0

Nj−1∑
i=0

si,j
α+ 1

+ si,j log |ωi,j · n|, (B.3)

results in

α̂t+1 = −1−
∑t

j=0

∑Nj−1

i=0 si,j∑t
j=0

∑Nj−1

i=0 si,j log |ωi,j · n̂t+1|
. (B.4)

Similary, solving

0 =
∂lt(θ)

∂n
= −α

t∑
j=0

Nj−1∑
i=0

si,j tan(arccos(ωi,j · n)), (B.5)

yields n̂t+1. However, this is computationally expensive. There-
fore, we assume that̂nt+1 is the average of the sampled directions,
which is given as

n̂t+1 =

∑t
j=0

∑Nj−1

i=0 si,jωi,j

∥
∑t

j=0

∑Nj−1

i=0 si,jωi,j∥
. (B.6)



C Pseudo Code

Algorithm 1 is the pseudo code of our method. The procedure
Sample() returns a random sampled direction according to the PDF
p(ω; n̂t, α̂t). The procedure Trace() evaluates the integrand by
tracing a final gather ray. The procedure NextNormal() and Nex-
tAlpha() are the same as Equation (B.6) and Equation (B.4) respec-
tively. The denominators of Equation (A.2) are accumlated into the
variabled.

The computation order isO(TM), whereM is the total number of
samples. To reduce the computation time, we are bound to use a
small number of iterations. It is more efficient to use only recent
samples instead of all samples generated in the past.

Algorithm 1 Final Gathering using AMIS
procedureFinalGather(ns, T , N )

n̂0 = ns

α̂0 = 1
for t = 0 to T − 1 do

for i = 0 toNt − 1 do
ωi,t = Sample(̂nt, α̂t)
fi,t = Trace(ωi,t)

end for
Weight(s, d, n̂, α̂, ω, f , t, N )
n̂t+1 = NextNormal(s, ω, t, N )
α̂t+1 = NextAlpha(s, ω, n̂t+1, t, N )

end for
return Sum(s, T − 1, N )

procedureWeight(s, d, n̂, α̂,ω, f , t,N )
for j = 0 to t− 1 do

for i = 0 toNj − 1 do
di,j += Ntp(ωi,j ; n̂t, α̂t)

end for
end for
for i = 0 toNt − 1 do

di,t = 0
for k = 0 to t do

di,t += Nkp(ωi,t; n̂k, α̂k)
end for

end for
for j = 0 to t do

for i = 0 toNj − 1 do
si,j = fi,j/di,j

end for
end for

procedureSum(s, t, N )
S = 0
for j = 0 to t do

for i = 0 toNj − 1 do
S += si,j

end for
end for
return S


