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Fig. 1. Equal-time (15 min) comparison of rendering with and without our connection technique (1600×1200 screen resolution). This Bathroom scene is lit by
caustics, and the BRDF of the mirror is extremely glossy (GGX roughness: 0.0001). BPT (a) and probabilistic connection BPT (PCBPT) (c) produce intensive
variance for specular-diffuse-glossy and glossy-diffuse-glossy reflections shown in closeups. Our technique reduces this variance significantly (b, d).

While bidirectional path tracing is a well-established light transport algo-

rithm, many samples are required to obtain high-quality results for specular-

diffuse-glossy or glossy-diffuse-glossy reflections especially when they are

highly glossy. To improve the efficiency for such light path configurations,

we propose a hierarchical Russian roulette technique for vertex connections.
Our technique accelerates a huge number of Russian roulette operations

according to an approximate scattering lobe at an eye-subpath vertex for

many cached light-subpath vertices. Our method dramatically reduces the

number of random number generations needed for Russian roulette by intro-

ducing a hierarchical rejection algorithm which assigns random numbers in

a top-down fashion. To efficiently reject light vertices in each hierarchy, we

also introduce an efficient approximation of anisotropic scattering lobes used

for the probability of Russian roulette. Our technique is easy to integrate

into some existing bidirectional path tracing-based algorithms which cache

light-subpath vertices (e.g., probabilistic connections, and vertex connec-

tion and merging). In addition, unlike existing many-light methods, our

method does not restrict multiple importance sampling strategies thanks to

the simplicity of Russian roulette. Although the proposed technique does not

support perfectly specular surfaces, it significantly improves the efficiency

for caustics reflected on extremely glossy surfaces in an unbiased fashion.
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1 INTRODUCTION
Monte Carlo light transport simulation is widely used for photore-

alistic rendering nowadays, however developing a robust algorithm

for various scenes is still a challenging problem. Bidirectional path

tracing (BPT) [Lafortune and Willems 1993; Veach and Guibas 1994]

is a well-established light transport algorithm which constructs vari-

ous paths by connecting subpaths traced from a light source and eye

(i.e., light subpath and eye subpath). By using multiple importance

sampling (MIS) [Veach and Guibas 1995], the combination of such

path sampling techniques reduces the estimation error significantly.

However, BPT produces high variance for specular-diffuse-glossy

(SDG) or glossy-diffuse-glossy (GDG) paths (Fig. 1a) because of a lack

of sampling techniques suitable for these path configurations. Hence,

a large number of samples are necessary to render high-quality im-

ages for highly glossy surfaces. Probabilistic connections [Popov

et al. 2015] increase the sample count by reusing hundreds of light

subpaths, however it is still insufficient and produces splotch-like

artifacts due to correlated variance (Fig. 1c). This paper tackles the

problem of reusing millions of light subpaths for BPT.

To improve the efficiency of connections in BPT, we propose an

acceleration technique for Russian roulette operations [Arvo and

Kirk 1990] according to an approximate scattering lobe at an eye

vertex (i.e., vertex of an eye subpath). Russian roulette was used to

reject unimportant connections to reduce the number of shadow

rays [Veach 1998]. However, this stochastic rejection was still expen-

sive when many light subpaths were cached and reused for every

eye vertex to increase the number of path samples. This is because

many light vertices (i.e., vertices of light subpaths) are candidates to

connect to an eye vertex, and Russian roulette is performed for each

candidate. Our approach accelerates this huge number of Russian

roulette operations by using a hierarchical rejection algorithm.
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Fig. 2. Our hierarchical Russian roulette finds light vertices within the
stochastic scattering range whose shape is determined using the BRDF at
an eye vertex. The size of the range is randomly changed for each pair of
light and eye vertices.

Our method is based on stochastic light culling [Tokuyoshi and

Harada 2016, 2017] which randomly determines the range of influ-

ence from each light source on the basis of Russian roulette. We

extend this idea to vertex connections performed at each eye vertex

by using the range from the eye vertex (Fig. 2). One critical prob-

lem of stochastic light culling was correlation of variance. While

Russian roulette for vertex connections generally uses a different

random number for each pair of eye and light vertices, stochastic

light culling generates a single random number for each light source

(or light vertex) in preprocessing. Thus, the correlation of variance

between eye vertices was produced. To avoid the correlation, we

introduce a hierarchical Russian roulette algorithm which generates

random numbers on-the-fly in a top-down fashion. Using this hier-

archical algorithm, we are able to assign a different random number

for each pair of eye and light vertices in a rapid way. For efficient

rejection of light vertices, we also introduce a squared ellipsoidal
lobe (SEL) approximation for anisotropic glossy reflections, which

represents the range from the eye vertex with a tight ellipsoid.

Our method scales to over millions of light subpaths. In addi-

tion, simple Russian roulette trivially gives the exact probability

density function (PDF) for an arbitrary path unlike probabilistic

connections or many-light methods such as lightcuts [Walter et al.

2005]. Thus, our method is easy to combine with other sampling

techniques by using MIS in a straightforward manner. Although our

Russian roulette probability ignores the visibility and BRDF at each

light vertex unlike probabilistic connections, the use of millions of

light subpaths is more suitable for highly glossy reflections than a

few hundreds of light subpaths used in probabilistic connections.

Combining our technique with BPT results in a fast reduction of

the error for SDG or GDG reflections (Fig. 1b and Fig. 1d). Our tech-

nique is easy to integrate into existing BPT-based methods which

cache light vertices, such as light vertex cache BPT [Davidovič et al.

2014], vertex connection and merging [Georgiev et al. 2012a] (a.k.a.,

unified path space sampling [Hachisuka et al. 2012]), as well as

probabilistic connection BPT. Although our technique works only

for rough specular reflections, it is efficient for caustics reflected on

extremely glossy surfaces.

Our contributions are as follows.

• To accelerate a huge number of Russian roulette operations

for vertex connections, we propose a hierarchical rejection

algorithm using a stochastic scattering range from an eye

vertex.

• For this hierarchical rejection, we introduce a top-down ran-

dom number assignment method to decorrelate variance.

• We also introduce an SEL approximation to represent the

scattering range with a tight ellipsoid for anisotropic glossy

reflections.

2 RELATED WORK
Bidirectional Path Tracing (BPT). Classic BPT [Lafortune and

Willems 1993; Veach and Guibas 1994] connects subpaths deter-

ministically. Davidovič et al. [2014] cached light vertices during

light subpath tracing, and then, for vertex connection at each eye

vertex, they randomly sampled a fixed number of light vertices from

the cache to avoid the GPU divergence. We employ this caching

approach, and apply Russian roulette for all the cached light ver-

tices instead of sampling a fixed number of connections. Popov et

al. [2015] proposed importance sampling of connections by reusing

hundreds of light subpaths on the basis of an importance cache

method [Georgiev et al. 2012b]. Popov et al. also introduced a con-

servative weighting strategy of multiple importance sampling (MIS)

for correlated paths. This probabilistic connection technique is effi-

cient, but the reuse of hundreds of light subpaths is still insufficient

for extremely glossy surfaces. Combination with our technique

reusing millions of light subpaths alleviates this limitation. Guided

BPT [Vorba et al. 2014] improved the efficiency of subpath sam-

pling via online learning using parametric mixture models [Herholz

et al. 2018, 2016]. Since our method performs for connections be-

tween generated subpaths, it can also be combined with such a

subpath generation technique to further improve the robustness.

Vertex connection and merging (VCM) is the combination of BPT

and progressive photon mapping [Hachisuka et al. 2008; Knaus and

Zwicker 2011] using MIS. We evaluate the efficiency of VCM using

probabilistic connections and our connection technique in Sect. 6.

Many-Light Methods. Efficient connections between eye vertices

and many light vertices have been studied in many-light meth-

ods [Dachsbacher et al. 2014] such as lightcuts [Walter et al. 2005].

For indirect illumination, many-light methods represent cached

light vertices as virtual point lights (VPLs) [Keller 1997]. Although

these methods are efficient, they are difficult to combine with BPT

using powerful PDF-based MIS strategies such as the balance heuris-
tic and power heuristic [Veach and Guibas 1995]. This is because

their PDF cannot be obtained for paths sampled by path tracing.

Therefore, non-PDF-based heuristics [Kollig and Keller 2006; Walter

et al. 2012] have been used for combining with path tracing. Estevez

and Kulla [2018] proposed importance sampling of many lights for

direct illumination to use PDF-based MIS for area lights. Although

this importance sampling can also be used for sampling VPLs, it is

also difficult to use the above PDF-based MIS heuristics for indirect

illumination. Unlike these many-light methods, our method does

not restrict MIS strategies for BPT, since it accelerates simple Rus-

sian roulette operations. Another issue in many-light methods is

correlation of variance, which induces banding artifacts. To reduce

this correlation for lightcuts, Walter et al. [2006] pregenerated and

stored several random numbers into each node of their light tree,

and then selected which set of pregenerated random numbers to
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Table 1. Notations used in this paper.

Symbol Domain Description

y R3
Vertex in a light subpath

z R3
Vertex in an eye subpath

P(y, z) [0, 1] Probability of Russian roulette

n S
2

Surface normal

ω S
2

A direction on a scattering lobe

ω′ S
2

Incident direction

ρ(z,ω′,ω) [0,∞] BRDF at z
qz(ω) [0,∞] Approximated scattering lobe at z
ξi [0, 1) ith uniform random number

R(ω; z, ξi ) [0,∞] Stochastic scattering range from z
D(·) [0,∞] GGX distribution

K(·) [0, 1] Squared ellipsoidal lobe (SEL) function

αx ,αy [0, 1] GGX roughness

άx , άy [0, 1] SEL roughness

M N Number of light subpaths

use for each eye vertex. Walter et al.’s approach reduces the correla-

tion, but cannot completely avoid it. Our method generates random

numbers on-the-fly, and thus completely eliminates the variance cor-

relation without increasing the memory usage. On the other hand,

the proposed method is restricted to partially stratified sampling,

while lightcuts can use fully stratified sampling.

Light Culling. Light culling is an acceleration technique for many

lights [Olsson et al. 2014], and frequently used in recent video games.

This technique performs shading only for directly visible eye ver-

tices inside a predetermined range from each light source. For real-

time rendering, fast GPU-based culling algorithms specialized for

directly visible eye vertices (e.g., tiled culling [Stewart 2015]) have

been developed, however the use of fixed light ranges was a biased

and inconsistent estimator. For unbiased culling, Tokuyoshi and

Harada [2016] introduced a stochastic light culling method which

randomly determines the light range based on Russian roulette us-

ing a precomputed single random number for each light. To apply

light culling to glossy VPLs, Dachsbacher and Stamminger [2006]

derived a tighter bounding spheroid for the isosurface of the re-

flected radiance for the Phong BRDF model [1975]. Tokuyoshi and

Harada [2017] extended this to compute the bounding spheroid

for the GGX microfacet BRDF [Walter et al. 2007]. Thus, glossy

reflective caustics can now be sampled for real-time rendering by

culling VPLs in an unbiased fashion, though it is limited only to

directly visible eye vertices. For indirect eye vertices in path trac-

ing, a bounding sphere tree of light ranges [Tokuyoshi and Harada

2016] was used for direct illumination of many lights by assuming

low-frequency directional distributions of light. Since correlation of

variance was produced owing to the precomputed random numbers,

that light-range tree had to be updated by generating new random

numbers iteratively to reduce correlation artifacts. We propose a

new method which avoids the correlation of variance as well as

supporting high-frequency reflections for BPT. This paper builds

upon Tokuyoshi and Harada’s previous work [2018] that discusses

BPT using stochastic light culling.

level 4 (16 vertices) level 3 (8 vertices) level 2 (4 vertices)

Fig. 3. Hierarchical culling using BVH. For a conservative intersection test
between the scattering range and each BVH node, the largest range is used
at the node. Descending the hierarchy level, this range shrinks stochastically
according to the number of light vertices contained by the node.

3 HIERARCHICAL RUSSIAN ROULETTE
In our method, Russian roulette is performed for all the cached light

vertices taking the BRDF at a given eye vertex into account. This

Russian roulette is accelerated by range-based culling, thus a few

light vertices are efficiently sampled frommany light vertices. While

existing light culling methods use the range from a light vertex, we

use the range from an eye vertex to perform light vertex culling

at each vertex in eye subpath tracing. This section introduces an

efficient hierarchical algorithm for Russian roulette.

3.1 Stochastic Scattering Range
For the connection between a light vertex y and eye vertex z, we
use the following acceptance probability for Russian roulette:

P(y, z) = min

©­­«
Cqz

(
−→zy
)

∥y − z∥2
, 1
ª®®¬ , (1)

whereC ∈ [0,∞) is a user-specified parameter to control the tradeoff

between variance and performance, and the spherical function qz(·)
is approximately equal to the scattering lobe:

qz (ω) ≈ ρ
(
z,ω′,ω

)
|ω · n|. (2)

For notations, please see Table 1. To accelerate this Russian roulette

for all the light vertices in the cache, rejected light vertices are

culled by using the range of acceptance in world space. Let ξi be
the ith uniform random number, then the bound of the world-space

acceptance range from z is a spherical function and given by the

distance ∥y − z∥ satisfying P(y, z) = ξi as follows:

R (ω; z, ξi ) =

√
Cqz(ω)

ξi
.

Thus, only light vertices enclosed by R (ω; z, ξi ) are evaluated for

vertex connections.

3.2 Hierarchical Rejection
3.2.1 Culling Using BVH. To search light vertices within the scat-

tering range R (ω; z, ξi ) rapidly, we build a binary bounding volume

hierarchy (BVH) of light vertices. Using this BVH, the intersection

between the scattering range and bounding box of light vertices

is tested hierarchically in a top-down fashion. However, while the

shape of the scattering range depends only on the approximated

lobe qz(ω), the size of the range depends on the random variable√
C/ξi and is different between light vertices (i.e. leaf nodes). There-

fore, to conservatively perform the intersection test for each BVH
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MAE: 0.058MAE: 0.058
299 s299 s

(a) Pregeneration

MAE: 18.014MAE: 18.014
314 s314 s

(b) Non-stratified sampling
(single precision)

MAE: 0.022MAE: 0.022
325 s325 s

(c) Non-stratified sampling
(double precision)

MAE: 0.022MAE: 0.022
275 s275 s

(d) Semi-stratified sampling
(single precision)

(e) Reference

Fig. 4. Comparison of random number assignment algorithms for hierarchical Russian roulette. The image quality is evaluated with the mean absolute error
(MAE) metric. To emphasize errors, only the results of inefficient glossy-to-glossy connections at the second eye vertex are visualized without MIS weights
(16 samples/pixel × 1024 iterations). The pregeneration approach (a) uses a pregenerated single random number for each light vertex similar to Tokuyoshi
and Harada [2016]. This produces undesirable artifacts due to the correlation of variance. On-the-fly assignment of non-stratified random numbers (b)
produces noticeable precision error of floating point arithmetic. Therefore, expensive double precision has to be used to reduce this error (c). Our on-the-fly
semi-stratified random number assignment (d) proposed in Sect. 3.3.3 is not only more numerically stable, but also faster than the non-stratified assignment.

node, the largest size is used at an internal node (Fig. 3). This size is

given by

√
C/mini ∈L ξi where L is the index set of leaves covered by

the node. This minimum random number mini ∈L ξi for each node

has to be obtained efficiently.

3.2.2 Problem of Pregenerated Random Numbers. One trivial ap-
proach to obtain the minimum random number for each node is to

precompute them using a bottom-up fashion. First, a single random

number is assigned to each light vertex in a preprocessing step in

a similar way to a stochastic light culling method [Tokuyoshi and

Harada 2016]. Then during the BVH construction phase, minimum

random numbers are propagated from leaf nodes to higher level

nodes. However, since the same precomputed random numbers are

used for all the eye vertices, this approach produces the correlation

of variance between eye vertices (Fig. 4a). This correlation induces

inefficiency if eye vertices are densely sampled (e.g., supersampling).

It also degrades the efficiency of variance reduction postprocess-

ing techniques (e.g., image denoising). To avoid the correlation of

variance, a different random number has to be assigned to each pair

of light and eye vertices. However, a full bottom-up propagation at

each eye vertex is prohibitively expensive. We propose a method to

generate the minimum random number on-the-fly in a top-down

BVH traversal without generating random numbers for all the light

vertices and executing a bottom-up propagation.

3.3 On-the-fly Minimum Random Number Generation
Wefirst discuss O(1)methods to generate theminimum value among

uniform random numbers in Sect. 3.3.1. Then, we extend the discus-

sion to a top-down hierarchical algorithm to generate a minimum

random number for each BVH node. To improve the numerical sta-

bility for this algorithm, we use a semi-stratified sampling approach

that generates uniform and partially stratified random numbers

using overlapped strata.

3.3.1 PDF of a Minimum Random Number. The minimum value

among N uniform random numbers {ξ1, . . . , ξN } can be generated

by considering its PDF. This PDF is analytically obtained as follows:

pmin,N (u) = N (1 − u)N−1,

where u ∈ [0, 1). For the derivation, please refer to the supplemental

material. The inverse of the cumulative distribution function for

this PDF also has a closed form solution. Therefore, the minimum

random number is simply obtained by generating only a single

uniform random number ξ ∈ [0, 1) as follows:

min {ξ1, . . . , ξN } = 1 − (1 − ξ )
1

N . (3)

Stratified Sampling. Although we could use an on-the-fly random

number generation based on Eq. (3) for our method, it suffers from

precision error for large N (Fig. 4b). However, for the case of 1D

stratified sampling, we can avoid the numerical error and simplify

the formulation. The minimum value of stratified random numbers

is always within the lowest stratum. Hence, it is given by

min {ξ1, . . . , ξN } =
ξ

N
. (4)

The PDF for this case is pmin,N (u) = N if u ∈ [0, 1/N ), otherwise
pmin,N (u) = 0.

3.3.2 Hierarchical Generation. Using the method in Sect. 3.3.1, we

generate the minimum random number mini ∈L ξi for each node on-

the-fly during a top-down BVH traversal. This is the inverse process

of the bottom-up propagation described in Sect. 3.2.2. Unlike the

bottom-up approach, our top-down algorithm does not generate

random numbers for culled nodes, thus it performs efficiently at

each eye vertex in eye subpath tracing.

For our BVH, the minimum random number for a parent node

must be equal to the minimum of its two child values. Therefore, in

top-down hierarchical generation, the parent’s minimum random

number is transmitted to one child (illustrated with a blue node

in Fig. 5). Then, for the other child (i.e., orange node in Fig. 5), a

new minimum random number larger than this parent value is

generated. The child inheriting the minimum value from the parent

is randomly selected according to the number of leaves covered by

the child node. This is because the probability that the minimum

value appears in the subtree is proportional to the number of leaves

if random numbers are uniformly distributed for leaves. Therefore,
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Fig. 5. On-the-fly assignment of minimum random numbers during the
top-down tree traversal. At each orange node, the minimum value of random
numbers within descendants is generated using Eq. (7). Then, the generated
minimum random number is transmitted to one child (blue). The green
interval for each node is the stratum for our semi-stratified random number
generation (i.e., [b , b′) for an orange node). The red value for each node is
the PDF (Eq. 8) of our generation and propagation, and it is constant in the
stratum. At the leaf level, although our semi-stratified algorithm produces
overlapped strata, the sum of the PDFs is one for these overlapped area.

this child selection probability is given as follows:

P
selection

(j) =
|Lj |

|Lj | + |Lj′ |
, (5)

where j is the node index, Lj is the index set of leaf nodes covered
by the node j, and the node index j ′ is the sibling of the node j. For
non-stratified sampling, the above new minimum random number

larger than the parent’s value can be generated on the basis of Eq. (3)

as follows: mini ∈L ξi = ξmin + (1 − ξmin)

(
1 − (1 − ξ )1/ |L |

)
, where

ξmin ∈ [0, 1) is the parent’s minimum random number transmit-

ted to the sibling node, and ξmin = 0 when generating at the root

node. However, this form is numerically unstable as mentioned in

Sect. 3.3.1. To improve the numerical stability using stratified sam-

pling, we stratify the random number space only for sibling nodes.

Although this semi-stratified approach does not guarantee full strat-

ification for the descendants of those sibling nodes, it generates

uniform random numbers for leaf nodes.

3.3.3 Semi-stratified Algorithm. Algorithm 1 shows the pseudo

code of our hierarchical Russian roulette using on-the-fly semi-

stratified random number assignment. Our method first generates a

minimum randomnumber at the root node by assuming 1D stratified

sampling. This minimum random number is obtained using Eq. (4)

by generating a single uniform random number ξ as follows:

min

i ∈Lroot
ξi =

ξ

|Lroot |
, (6)

where Lroot is the index set of leaves covered by the root node (i.e.,

all the light vertices in the cache). In our top-down algorithm, the

minimum random number ξmin at a parent node is transmitted to

one child, and a new minimum random number is generated for

ALGORITHM 1: Hierarchical Russian roulette using a binary BVH.

function HierarchicalRussianRoulette(z, root)
|Lroot | ← GetLeafCount(root);
ξ ← GenerateRandomNumber();

ξ ′min ←
ξ

|Lroot |
;

b′ ← 1

|Lroot |
;

Traverse(z, root , ξ ′min , b
′);

end
function Traverse(z, node , ξmin , b)

if R (ω; z, ξmin ) ∩ AABB(node) , ∅ then
if IsInternal(node) then
|L0 | ← GetLeafCount(node .child0);

|L1 | ← GetLeafCount(node .child1);

ξ ← GenerateRandomNumber();

if ξ <
|L0 |

|L0 |+|L1 |
then l ← 0;m ← 1;

else l ← 1;m ← 0;

ξ ← GenerateRandomNumber();

ξ ′min ← b + (1 − b) ξ
|Lm |

;

b′ ← b + (1 − b) 1

|Lm |
;

Traverse(z, node .childl , ξmin , b);
Traverse(z, node .childm , ξ ′min , b

′);

else
y← GetLightVertex(node);
if ξmin < P (y, z) then Connect(y, z);

end
end

end

the other child. For these propagation and generation of random

numbers, we use numerically stable stratified sampling. To stratify

the random number space between two sibling nodes for minimum

random numbers, we transmit the supremum of the stratum b ∈
[0, 1] from the parent to a child in addition to ξmin. Then, an adjacent

stratum [b,b ′) is used for the other child. The supremum b ′ ∈ (b, 1]
is determined by stratifying [b, 1) with the number of leaves |L|
covered by this child node as follows:

b ′ = b + (1 − b)
1

|L|
.

Although this stratum [b,b ′) can overlap with strata of the descen-

dants of the sibling node, it is simple to compute. Using the stratum

[b,b ′), the new minimum random number is obtained merely by

generating a single uniform random number ξ as follows:

min

i ∈L
ξi = b + (1 − b)

ξ

|L|
. (7)

Eq. (6) is a special case of Eq. (7) using b = 0 for the root node.

This process performs recursively in the BVH traversal. Using this

algorithm, we assign a different random number for each pair of

light and eye vertices without executing a full bottom-up traversal

of the entire tree.

Our on-the-fly random number assignment converts undesirable

banding artifacts to high-frequency noise as shown in Fig. 4. Al-

though stratification is partial in our approach, it is beneficial for
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the performance and numerical stability (Fig. 4d). For more im-

plementation details, please refer to the C++ example code in the

supplemental material.

3.3.4 PDF for Our Semi-stratified Algorithm. Our top-down algo-

rithm avoids overlaps of strata for sibling nodes, but it ignores full

stratification for the descendants of these sibling nodes. Therefore,

overlaps of strata are produced for leaf nodes. However, the sum

of PDFs for these overlapped strata is always one (i.e., uniform dis-

tribution), thus our approach is unbiased. For the random number

generation within a stratum [b,b ′), the PDF is given as

p[b ,b′)(u) =

{
1

b′−b if u ∈ [b,b ′)

0 otherwise

.

The probability of the generation event occurring at a node is the

product of child selection probabilities (Eq. 5) from the root node to

that node. The generated random number is propagated to a descen-

dant node according to the product of child selection probabilities

from the above generation node to the descendant node. Let X be

the set of node indices from the root to a node, then the PDF of the

generated random number is yielded as follows:

pX (u) = p[b ,b′)(u)
∏
j ∈X

P
selection

(j), (8)

where P
selection

(j) = 1 if j is the root. When arriving at a leaf node,∏
j ∈X P

selection
(j) = 1/|Lroot | is obtained, thus the PDF is given as

pX (u) =
1

(b′−b) |Lroot |
for u ∈ [b,b ′). Fig. 5 illustrates the generation

and propagation of random numbers, strata, and their PDFs in our

algorithm. As shown in this figure, the sum of the PDFs for the

overlapped area is one at leaf nodes.

4 ANISOTROPIC LOBE APPROXIMATION FOR THE
ACCEPTANCE PROBABILITY

While the shape of the stochastic scattering range R (ω; z, ξi ) de-
pends on the lobe representationqz(ω), it is desirable for the shape to
be simple for efficient culling implementation (i.e., intersection test

betweenR (ω; z, ξi ) and each BVH node). Although a loose bounding

spheroid for this scattering range can be used for a conservative in-

tersection test [Dachsbacher and Stamminger 2006; Tokuyoshi and

Harada 2017], it increases false positives especially for anisotropic

BRDFs. To build a tighter ellipsoidal range for anisotropic scatter-

ing lobes yielded by microfacet BRDFs [Cook and Torrance 1982],

we introduce a squared ellipsoidal lobe (SEL) function for the lobe

representation. For the efficient implementation of the ellipsoid-box

intersection test, please refer to the supplemental material.

4.1 GGX Distribution
Our SEL function is based on the GGX distribution [Trowbridge

and Reitz 1975; Walter et al. 2007]:

D
(
ω;Q,αx ,αy

)
=

χ+(vz )

παxαy
(
v2

x /α
2

x +v
2

y/α
2

y +v
2

z

)
2
,

where Q =
[
ωT

x ωT

y ωT

z
]

T

is the 3×3 orthogonal matrix which

consists of the lobe axes ωx , ωy , and ωz , and
[
vx ,vy ,vz

]
T

= QωT

is the direction transformed into the lobe space. This orthogonal

matrix Q represents the orientation of the lobe. χ+(vz ) is the Heav-
iside function: 1 if vz > 0 otherwise 0. For the isotropic case, this

distribution can be rewritten using α = αx = αy as follows:

D(vz ,α) =
α2χ+(vz )

π
(
1 −v2

z + α
2v2

z
)
2
.

For microfacet BRDFs, the GGX distribution is used for a nor-

mal distribution function (NDF, i.e., distribution of microfacet nor-

mals) using the following parameterization:D
(
ωh ;T,αx ,αy

)
where

ωh =
ω+ω′

∥ω+ω′ ∥ is the halfvector, and the orthogonal matrix T =[
tTx tTy nT

]
T

consists of the tangent tx , bitangent ty , and nor-

mal n of the surface. For this case,

[
αx ,αy

]
represent the surface

roughness. The GGX distribution is also used to approximate the

scattering lobe (e.g., for image based lighting [Estevez and Lecocq

2018]). In this paper, the GGX distribution is referred to as a GGX
NDF only when it is used as an NDF. An approximated scattering

lobe using the GGX is referred to as a GGX scattering lobe. Our lobe
approximation using an SEL is built upon a GGX scattering lobe.

4.2 Squared Spheroidal Lobe (SSL)
For the microfacet BRDF, a scattering lobe can be approximated

with an isotropic GGX distribution using a half angle:

qz(ω) ∝ D

(
cos

θ

2

, ά

)
, (9)

where θ is the angle between ω and the lobe axis ωz (i.e., the dom-

inant direction of the scattering lobe), and ά is the roughness of

the scattering lobe. Using this representation, the scattering range

R (ω; z, ξi ) ∝
√
qz(ω) becomes a spheroid [Tokuyoshi and Harada

2017]. In this paper, the right side of Eq. (9) without the normal-

ization factor is referred to as the squared spheroidal lobe, which is

given by

πά2D

(
cos

θ

2

, ά

)
=

4ά4(
1 − cosθ + ά2(1 + cosθ )

)
2
. (10)

4.3 Squared Ellipsoidal Lobe (SEL)
Themicrofacet BRDF produces an anisotropic scattering lobe, even if

the NDF is isotropic. Since Eq. (10) is an isotropic spherical function,

it cannot represent such anisotropic scattering effects. Therefore, we

generalize the squared spheroidal lobe to a squared ellipsoidal lobe

(SEL). We yield the SEL using two roughness parameters

[
άx , άy

]
as follows:

K
(
ω;Q, άx , άy

)
=

4ά4

max(
U −vz + ά

2

max
(U +vz )

)
2
,

U =

√(
ά2

max
/ά2

x
)
v2

x +
(
ά2

max
/ά2

y

)
v2

y +v
2

z ,

where άmax = max

(
άx , άy

)
. For the derivation, please refer to the

supplemental material. The square root of this SEL is a simple ellip-

soid whose center and semiaxes in the lobe space are

[
0, 0,

1−ά 2

max

2

]
and

[
άx , άy ,

1+ά 2

max

2

]
, respectively.
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Fig. 6. The upper graphs are plots of GGX lobes (i.e., left side of Eq. (11),
solid lines) and our SELs (i.e., right side of Eq. (11), dashed lines) for different
GGX roughness parameters. The lower graphs are the differences between
these GGX lobes and SELs. The horizontal axis is arctan(vx /vz ) for vy = 0.
The approximation error of Eq. (11) is smaller for lower roughness.

Approximation of the GGX. The SEL is a spherical function, while

the GGX is a hemispherical distribution. However, for small rough-

ness, the following approximation can be used:

παxαyD
(
ω;Q,αx ,αy

)
≈ K

(
ω;Q,

αx
2

,
αy

2

)
. (11)

Fig. 6 shows the approximation accuracy of Eq. (11) for different

roughness parameters. The approximation error is more negligible

for smaller roughness values.

4.4 Approximation for an Anisotropic Scattering Lobe
For BPT using MIS, the approximation accuracy for the PDF is

important only for around the peak of the scattering lobe (i.e., the

product of the BRDF and cosine term as written in Eq. (2)). Therefore,

we use the original lobe value at an approximated peak direction

ωz for the coefficient of an SEL as follows:

qz(ω) = cK
(
ω;Q, άx , άy

)
,

where c = ρ(z,ω′,ωz )|ωz · n| is the coefficient. For microfacet

BRDFs, since the masking-shadowing function and Fresnel are low

frequency, the peak direction is approximated with the perfect spec-

ular reflection direction ωz = 2(ω′ · n)n − ω′ for smooth surfaces.

The lobe axes ωx ,ωy and roughness

[
άx , άy

]
are obtained ana-

lytically by spherical warping [Xu et al. 2013]. Although spherical

warping was derived for anisotropic spherical Gaussians, it is also

applicable to the GGX distribution. Therefore, this paper yields the

SEL using the following process:

(1) If the NDF is not a GGX, it is approximated with a GGX NDF.

(2) A GGX scattering lobe centered at ωz is computed using

spherical warping of the GGX NDF.

(3) This GGX scattering lobe is converted to an SEL using Eq. (11).

For the detail of spherical warping, please refer to Appendix A.

5 INTEGRATION INTO BIDIRECTIONAL PATH TRACING
This paper combines our hierarchical Russian roulette-based con-

nections and probabilistic connections [Popov et al. 2015] (or regular

vertex connections) by using multiple importance sampling (MIS).

This is because our connections are efficient for specular-diffuse-

glossy (SDG) or glossy-diffuse-glossy (GDG) paths, while probabilis-

tic connections are efficient for low-frequency illumination effects.

Probabilistic connections sample important light vertices for a given

eye vertex from the cache using a probability mass function (PMF)

which takes the visibility, geometric term, and BRDFs at light and

eye vertices into account. However, probabilistic connections have

to limit the number of reused light subpaths to a small number (e.g.,

100), because its computational overhead and memory requirement

are proportional to the product of the reused subpath count and

the number of PMF records. Using hundreds of samples is still in-

sufficient for extremely glossy surfaces. Although the acceptance

probability of our method ignores the visibility and BRDF at a light

vertex, reusing millions of light subpaths alleviates the limitation of

probabilistic connections as well as regular vertex connections.

Multiple Importance Sampling. In order to use powerfulMIS strate-

gies such as the balance heuristic, the product of the sample count

and PDF for each technique must be obtained. Simple Russian

roulette forM light subpaths trivially gives this sampling density:

dt (x̄) = MP(ys−1, zt−1)pt (x̄), (12)

where x̄ is a path constructed from a light subpath {y0, . . . , ys−1}

and eye subpath {z0, . . . , zt−1}, and pt (x̄) is the PDF for regular

vertex connections at the eye vertex zt−1. P(ys−1, zt−1) is the ac-

ceptance probability of Russian roulette given by Eq. (1) for the

connection between ys−1 and zt−1. On the other hand, probabilistic

connections ignore the PMF and use pt (x̄) as the sampling den-

sity instead. This is because the PMF for probabilistic connections

cannot be obtained for paths constructed by other techniques, and

the sample count is modified to one by considering the worst case

scenario of the correlation of paths induced by the subpath reuse.

Although this modification is conservative to the path correlation,

it does not improve the efficiency for SDG or GDG paths. Combin-

ing with our method, we are able to sample SDG or GDG paths

efficiently as well as other paths, since P(ys−1, zt−1) takes glossy

reflections into account (Eq. 12). Although our Russian roulette for

many light vertices can also produce the path correlation, the error

can be significantly smaller than connecting an eye vertex to all

the light vertices by setting a small coefficient C for the acceptance

probability P(ys−1, zt−1).

Optimization. To improve the efficiency of this combination, this

paper applies our Russian roulette-based connections only to glossy

surfaces at eye vertices, because probabilistic connections are more

efficient for diffuse surfaces. In addition, we do not reuse y0 and y1

(i.e., light vertices on a light source and the first intersected surface)

for our connections. This is because a connected path {y0, y1, zt−1}

is never an SDG or GDG configuration. This optimization does not

only improve the performance and sampling efficiency, but also

reduces the memory usage for cached light vertices.
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Fig. 7. Equal-time (15 min) comparison of rendering with and without our connections (HRR). All scenes are lit by caustics and have highly glossy materials.
Combining our technique with BPT or PCBPT reduces variance significantly for caustics reflected on highly glossy surfaces.

6 EXPERIMENTAL RESULTS
Here we present the rendering results of BPT-based algorithms with

and without our hierarchical Russian roulette. Images are rendered

at 1600×1200 screen resolution on an AMD Ryzen
™
Threadripper

™

2990WX Processor. In our implementation, BPT samples indices of

cached light vertices uniformly for vertex connections similar to

light vertex cache BPT [Davidovič et al. 2014]. The number of reused

light subpaths M is the same as the number of eye subpaths (i.e.,

M = 1600 × 1200) for BPT, vertex connection and merging (VCM),

and our hierarchical Russian roulette-based connections (HRR). For

probabilistic connection BPT (PCBPT), we reuse 100 light subpaths,

and build importance records on 0.04% of eye subpaths as same

as Popov et al. [2015]. For HRR, we set C = Φ
16M according to

a stochastic light culling method [Tokuyoshi and Harada 2017],

where Φ is the total radiant flux of light sources. The image quality

is evaluated with the root-mean-square error (RMSE) metric and

mean absolute error (MAE) metric.

BPT. Fig. 7 shows rendering results of BPT and PCBPT with and

without HRR. BPT induces undesirable firefly noises for specular-

diffuse-glossy (SDG), glossy-diffuse-glossy (GDG), and specular-

diffuse-specular (SDS) paths. PCBPT produces less variance than

BPT, however it still induces noticeable correlated noises due to the

insufficient sample count on glossy surfaces. By combining with

our HRR, these noises are reduced significantly for SDG and GDG
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Fig. 8. Plots of RMSE (upper) and MAE (lower) for Fig. 1 and Fig. 7. The oscillations for RMSEs are due to firefly noises which often occur on SDG, GDG, and
SDS paths for BPT and PCBPT. Our HRR reduces fireflies for SDG and GDG reflections. Fireflies are also produced on highlights via specular interreflections,
especially for the Box scene. The error convergence for the Box scene is visible in the MAE metric which is less sensitive to fireflies.

Table 2. Computation time (sec) per iteration for each pass (Washroom scene). Combining additional techniques increases eye-subpath tracing time since
additional subpaths are connected, though it improves the robustness. The BVH construction time for HRR is amortized when combining with VCM.

BPT BPT+HRR PCBPT PCBPT+HRR VCM VCM+HRR PCVCM PCVCM+HRR
Light-subpath tracing 0.076 0.071 0.038 0.059 0.073 0.070 0.060 0.061
BVH construction - 0.043 - 0.043 0.044 0.044 0.044 0.044
Importance records - - 0.010 0.010 - - 0.010 0.010

Eye-subpath tracing 0.173 0.312 0.290 0.435 0.232 0.360 0.359 0.482
Total 0.248 0.426 0.338 0.546 0.350 0.475 0.473 0.597

reflections. Plots of RMSE and MAE for each scene are shown in

Fig. 8. For all the scenes, rendering with HRR reduces error more

than without HRR. While PCBPT is more efficient than BPT, BPT

with HRR has comparable quality to PCBPT with HRR. Our method

reduces fireflies which cause oscillations of RMSE for SDG and GDG

reflections, but fireflies due to other paths (e.g., SDS paths) sampled

with low probability still remain. For the Box scene, intensive fire-

flies are also produced on highlights via specular interreflections

which are mainly sampled by unidirectional path tracing. Although

our technique reduces error for this scene, large oscillations due to

highlights still occur for RMSE. For the error convergence for these

scenes, please see MAEs which are less sensitive to such outliers.

VCM. Fig. 9 shows the results of VCM using probabilistic connec-

tions (PCVCM). For vertex merging, only indirect light vertices (i.e.,

light vertices excluding y0 and y1) are cached to improve the effi-

ciency [Georgiev 2013]. The merging radius is determined using ray

differentials [Igehy 1999], and the radius reduction parameter for

progressive photon mapping is set by 0.75 to maximize the variance

convergence rate [Georgiev et al. 2012a]. Fig. 9a uses five pixels for

the initial radius in screen space. For this scene, it produces notice-

able light leaks from outside the room. Such light leaks are often

less desirable than high-frequency noise, because it is difficult to

remove them in postprocessing unlike noise. Although progressive

photon mapping reduces such undesirable bias by shrinking the

merging radius iteratively, thousands of iterations is still insufficient

for this scene. The use of a smaller initial radius reduces light leaks

significantly, while it increases variance (Fig. 9b). Combining with

HRR, such variance on glossy surfaces is alleviated without increas-

ing the visually unacceptable bias (Fig. 9c). Although HRR does not

reduce the variance for SDS paths, the PDF of our connections can

be higher than vertex merging for glossy reflections. This is because

the PDF of vertex merging is reduced by shrinking the radius itera-

tively, while our PDF is not. Fig. 10 shows the improvement of the

RMSE convergence speed for PCVCM using our technique.

Anisotropy. Fig. 11 shows rendering results of anisotropic re-

flections. PCBPT (Fig. 11a) produces elongated splotches on the

anisotropic reflection surface because of the variance caused by the

insufficient sample count. Fig. 11b uses a squared spheroidal lobe

(SSL) approximation using isotropic spherical warping [Wang et al.

2009] for the acceptance probability of HRR, however it is still ineffi-

cient for such strong anisotropy. On the other hand, the probability

using the proposed squared ellipsoidal lobe (SEL) reduces variance

significantly (Fig. 11c).

Performance. Table 2 shows the computation time for each pass.

The most significant difference is in eye-subpath tracing which is

the main bottleneck. Combining HRR increases connected paths in

addition to existing vertex connections, and thus the computation

time in each iteration is increased by both the BVH traversing
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9311 iterations9311 iterations

RMSE: 0.076RMSE: 0.076

(a) PCVCM (5 pixel initial radius)

9475 iterations9475 iterations

RMSE: 0.400RMSE: 0.400

(b) PCVCM (0.6 pixel initial radius)

7090 iterations7090 iterations

RMSE: 0.094RMSE: 0.094

(c) PCVCM+HRR (0.6 pixel initial radius)

Fig. 9. PCVCM with and without HRR (60 min) for the Bathroom scene. PCVCM with a 5 pixel initial merging radius (a) produces noticeable light leaks
(orange box) for this scene. The use of a 0.6 pixel radius (b) avoids these leaks rapidly, while it increases noise (blue box). The combination with HRR (c) reduces
the noise for highly glossy reflections without increasing the undesirable bias.

����

���

�� ���

����������	
���	
	�	������	���

��������������	
���	
	�	������	���

������������	
���	
	�	������	���

����������������	
���	
	�	������	���

��� ���

RMSE
Bathroom

Fig. 10. Plots of RMSE for PCVCM with and without HRR. Combination
with HRR improves the error convergence speed for SDG and GDG reflec-
tions.

overhead and additional connections. However, as mentioned in

previous paragraphs, the combination with HRR results in fast error

reduction for glossy surfaces with a smaller number of iterations

than without HRR. One overhead of HRR is the BVH construction.

However, when combining our connections with VCM (or PCVCM),

the BVH of light vertices can also be used for the range query of

photons. Thus, our BVH construction cost is amortized for this

combination. The difference for light-subpath tracing is caused by

the number of cached light vertices. BPT using light vertex cache

stores all the light vertices into the cache, while PCBPT caches only

100 light subpaths. For the combination of PCBPT and HRR (or

vertex merging), indirect light vertices forM subpaths are cached

additionally. On the other hand, for the combination of HRR and the

cache-based BPT (or VCM), HRR reuses indirect light vertices in the

cache used for BPT (or VCM). Therefore, the memory requirement

and caching cost are also amortized for these combinations. For

computation time for other scenes, please refer to the supplemental

material. In our implementation, the total memory usage of the

BVH and indirect light vertex cache for HRR is 11.8 MB for the

Bathroom scene, 69.8 MB for the Washroom scene, 11.4 MB for

the Kitchen scene, and 129 MB for the Box scene.

Scalability. Fig. 12 shows the effect of path reuse in our technique

for different resolutions (i.e., different number of reused subpathsM).

Using C = Φ
16M , the acceptance probability P(y, z) given by Eq. (1)

is almost inversely proportional to M , and thus the expected con-

nection countMP(y, z) converges to a constant forM →∞. Never-
theless, our method produces smaller error for a higher resolution.

2702 iterations2702 iterations

RMSE: 0.674RMSE: 0.674
MAE: 0.0476MAE: 0.0476

(a) PCBPT

1662 iterations1662 iterations

RMSE: 0.136RMSE: 0.136
MAE: 0.0263MAE: 0.0263

(b) PCBPT+HRR (SSL)

1584 iterations1584 iterations

RMSE: 0.025RMSE: 0.025
MAE: 0.0100MAE: 0.0100

(c) PCBPT+HRR (SEL)

Fig. 11. Closeups of the Washroom scene (15 min) with anisotropic rough-
ness ([αx , αy ] = [0.0001, 0.01]). Although HRR using a squared spheroidal
lobe (SSL) (b) improves the quality from PCBPT (a), it still produces notice-
able variance. Using our squared ellipsoidal lobe (SEL) (c), the variance is
further reduced significantly.

This is because the use of a smaller C for a larger M prevents the

probability from being clamped to 1. Therefore, our technique is

efficient for a large number of reused subpaths.

7 LIMITATIONS
Perfectly Specular Surfaces. Hierarchical Russian roulette does

not support perfectly specular surfaces. Thus, vertex merging has

to be used for unconnectable specular-diffuse-specular (SDS) paths

(Fig. 13). However, our technique works efficiently for extremely

glossy reflections (e.g., GGX roughness 0.0001) that are hard to

distinguish from perfectly specular reflections in the final rendered

image as shown in Fig. 1 and Fig. 7.

Fireflies. Vertex connections can produce fireflies caused by the

squared inverse distance between eye and light vertices. For SDG

or GDG paths in BPT, fireflies on the edges of glossy objects cannot

be avoided in an unbiased fashion. Although our method reduces

fireflies significantly, fireflies can still occur with low probability for

this corner case in BPT (Fig. 14a). This is because the probability

of Russian roulette has to be clamped to 1 (Eq. 1). However, such

fireflies can be removed easily in postprocessing [Zirr et al. 2018]
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Fig. 12. Comparison between different resolutions for PCBPT+HRR. The
upper images are differences from the reference at 500 iterations. The lower
graphs are plots of RMSE andMAE, where the horizontal axis is the iteration
count. Since the number of reused light subpaths is equal to the resolution,
our method produces smaller error for a higher resolution for caustics
reflected on the mirror.

(Fig. 14b). Combination with vertex merging using a small merging

radius also suppresses fireflies (Fig. 14c).

Path Correlation. Russian roulette for many vertex connections

using a small acceptance probability produces less correlation of

paths than connecting an eye vertex to all the light vertices. However,

it still has the potential to produce noticeable path correlation when

light vertices are densely distributed in local, similar to VCM. If

an MIS heuristic taking the density of light vertices into account

is available, the robustness can be further improved. We refer the

reader to Jendersie’s research [2019] for MIS considering the light

vertex density for VCM.

8 FUTURE WORK
Anisotropic Refractions. For our scattering lobe representation, an

existing spherical warping technique for anisotropic reflections [Xu

et al. 2013] is used, while spherical warping for anisotropic refrac-

tions is not presented yet. Although simple isotropic spherical warp-

ing can be used instead [Estevez and Lecocq 2018], it can be inef-

ficient for anisotropic NDFs. Derivation of spherical warping for

anisotropic refraction lobes is our future work.

Multi-Lobes. Our current implementation of hierarchical Russian

roulette performs for a single lobe representation, thus it has to be

used for each lobe for multi-lobe BRDFs. However, hierarchical Rus-

sian roulette can support multi-lobes by representing the scattering

range using a union of ellipsoids. We would like to investigate the

efficiency of this multi-lobe representation in the future.

BRDF at a Light Vertex. Since our technique ignores the BRDF at a
light vertex for the Russian roulette probability, it is not efficient for

glossy-to-glossy interreflections and glossy-diffuse-specular (GDS)

paths unlike SDG paths. For GDS paths, we can use a reverse form

of the proposed hierarchical Russian roulette, i.e., intersection test

between the scattering range from a light vertex and BVH of eye

vertices. However, this approach has to cache eye vertices in addition

to light vertices, and the implementation is more complex than the

PCBPT+HRRPCBPT+HRR PCVCM+HRRPCVCM+HRR ReferenceReference

Fig. 13. Closeups of the Box scene (60 min) for perfectly SDS paths. Since
our HRR is an acceleration technique for vertex connections, it does not
improve these unconnectable paths.

(a) PCBPT+HRR (b) PCBPT+HRR+OR (c) PCVCM+HRR

Fig. 14. Closeups of the Box scene (60 min). Even combining BPT with our
technique (a), firefly noise can occur for SDG reflections when connected
light and eye vertices are very close. However, these fireflies can be removed
easily by using outlier rejection (OR) [Zirr et al. 2018] in postprocessing (b).
Combination with VCM (c) also suppresses them.

proposed technique. An efficient method taking the BRDF at a light

vertex into account is a future work.

9 CONCLUSIONS
We have presented an acceleration technique for a huge number of

Russian roulette operations for connections between an eye vertex

and many cached light vertices. This technique rejects light vertices

by testing the intersection between the BVH of light vertices and the

world-space acceptance range from an eye vertex. To generate a dif-

ferent random number for each Russian roulette operation, we have

proposed an efficient hierarchical random number assignment algo-

rithm. Since this algorithm performs in the top-down BVH traversal,

it generates random numbers only for visited nodes. In addition,

to improve the efficiency of this hierarchical Russian roulette, we

also used a tight ellipsoidal range. To build the ellipsoidal range, we

introduced a squared ellipsoidal lobe function to approximate an

anisotropic scattering lobe created by the microfacet BRDF. Since

our technique accelerates Russian roulette unlike existing many-

light methods, it is easy to integrate into BPT-based algorithms

without changing the heuristic of multiple importance sampling.

Although combining with an additional sampling technique induces

an overhead, the combination with our technique improves the ro-

bustness for specular-diffuse-glossy or glossy-diffuse-glossy paths

which are often problematic for BPT. Our technique does not sup-

port perfectly specular surfaces, however it works efficiently for

extremely glossy reflections that are hard to distinguish from per-

fectly specular reflections.
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A SPHERICAL WARPING FOR ANISOTROPIC LOBES
Since the halfvector ωh depends on the outgoing direction ω, the
GGX NDF is rewritten as:

D
(
ωh (ω);T,αx ,αy

)
=

χ+ (ωh (ω) · n)
παxαy (д(ω) + 1)2

,

д(ω) = λx (ωh (ω) · tx )
2 + λy (ωh (ω) · ty )

2, (13)

where λx =
1

α 2

x
− 1, and λy =

1

α 2

y
− 1. Spherical warping [Xu et al.

2013] approximates Eq. (13) using a second order Taylor expansion:

д(ω) ≈
[
ω · ω′x ω · ω′y

]
H
[
ω · ω′x ω · ω′y

]
T

,

where ω′x =
ω′×n
∥ω′×n∥ , ω

′
y =

ωz×ω′x
∥ωz×ω′x ∥

, and H is the 2×2 Hessian

matrix of д(ω). At the peak direction ωh (ω) = n for the NDF, H is

given by

H =


λx (ω′x ·tx )

2

+λy (ω′x ·ty )
2

4(ω′ ·n)2
(λy−λx )(ω′x ·tx )(ω′x ·ty )

4(ω′ ·n)
(λy−λx )(ω′x ·tx )(ω′x ·ty )

4(ω′ ·n)
λy (ω′x ·tx )

2

+λx (ω′x ·ty )
2

4

 .
Eigendecomposition for H yields

д(ω) ≈ λ′x (ω · ωx )
2 + λ′y (ω · ωy )

2,

where λ′x and λ′y are the eigenvalues of H, and[
ωx
ωy

]
=

[
ex
ey

] [
ω′x
ω′y

]
,

where ex and ey are the eigenvectors of H. Therefore, the NDF is
approximated with a GGX scattering lobe centered at the perfect

specular reflection vector ωz as follows:

D
(
ωh ;T,αx ,αy

)
≈ D

(
ω;Q,α ′x ,α

′
y

)
,

where Q =
[
ωT

x ωT

y ωT

z
]

T

, α ′x =
1√
λ′x+1

, and α ′y =
1√
λ′y+1

.
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