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1 Squared Spheroidal Lobe (SSL)

To derive a squared ellipsoidal lobe (SEL) function, we start from the following squared
spheroidal lobe (SSL):
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where 6 is the angle between a direction @ € S? and the lobe axis o, € S2, ¢ €
[0, 1] is the roughness of the lobe, and D (cos#6, @) is the isotropic GGX distribu-

tion [TR75, WMLTO7]. Tokuyoshi and Harada [TH17] derived (/xD (cos g,d) is a

spheroid whose center and semiaxes in the lobe space are [0, 0, %] and [1, 1, ';gz]

respectively. Therefore, the lobe-space center ¢ and semiaxes r of /7d&2D (cos g, c’y)

are given by
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2 Extension to a Squared Ellipsoidal Lobe (SEL)

This paper extends semiaxes r using anisotropic roughness parameters [o’zx, c’yy] as fol-
lows:
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where @,,x = max (c’zx, c’yy). For this, the lobe-space center is
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Our SEL function is given by the squared distance from the origin to this ellipsoid.
Therefore, we derive the SEL using the intersection of this ellipsoid and a line. A
position on this line is given by

p = lo,
where ¢t is a distance from the origin. The ellipsoid-line intersection is equivalently
rewritten into the intersection of a transformed line and a unit sphere centered at the
origin. For this, a position on this line is given by
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where @ = [x,y,z]. The intersection point of this line and the unit sphere is given as
llp’Il> = 1. It is rewritten into a quadratic equation:

|22 +2(d - s)t +[Is|> = 1 = 0.
The positive solution of this equation is given by

_ V-2 —[[dIP(sIP - 1) —d-s
|2 '
Substituting Eq. (1) and Eq. (2) into Eq. (3), the solution is obtained as follows:
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Therefore, the SEL is derived as
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where E is the 3x3 identity matrix. To represent the orientation of the lobe, Eq. (2) is
generalized using a 3x3 orthogonal matrix Q as follows:
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where [vy, vy, v.]T = Qo is the direction transformed into the lobe space. This SEL
can also be rewritten into the following form:
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((U - vz) + dﬁlax (U + Vz))2 .
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