
Motion Rings for Interactive Gait Synthesis

Tomohiko Mukai ∗
Square Enix

Time axis

Pose space

Motion sample

(c) Bumpy terrain (d) Stairs (e) Stepping stones(a) Motion ring (b) Precomputed sphere

Figure 1: Continuous gait motion is synthesized by circulating through a motion ring while a circulation path is controlled to obey user input
within the quarter gait cycle. The gait controller also optimizes the circulation path to establish the ground contact constraints by detecting
the terrain surface using precomputed spheres.

Abstract

This paper presents a practical system for synthesizing gait ani-
mation in game environments. As well as improving the reality
of animation, we should improve the efficiency and the maneuver-
ability of the character, both of which are essential for interactive
games. Our system supplies these practical demands by integrat-
ing a motion interpolation technique and a sampling-based con-
trol mechanism. We introduce a parameterized looped motion data
structure, called a motion ring, for synthesizing a variety of cyclic
motions. A continuous gait motion is synthesized by circulating
through the motion ring while the interpolation parameter is adap-
tively controlled according to the terrain condition. The gait con-
troller uses a sampling-based precomputation technique which effi-
ciently searches natural foot contact on terrain of an arbitrary sur-
face shape. The interpolation parameter is also controlled to obey
the user control within the duration of quarter gait cycle. Although
our system slightly sacrifices the physical correctness of the syn-
thesized motion in order to quickly respond to user input, critical
visual artifacts such as foot-skating and jerky movement are pre-
vented. We demonstrate the efficiency and versatility of our inte-
grated system by interactively navigating the character on complex,
uneven terrain.

CR Categories: I.3.7 [Computer Graphics]: Three-dimensional
Graphics and Realism—Animation

Keywords: gait synthesis, motion interpolation, responsive ani-
mation

1 Introduction

Gait animation of humanoid characters is frequently seen in inter-
active applications, especially computer games. Recent hardware
has the capability to execute a complicated motion synthesis algo-
rithm for improving the animation quality. However, more efficient

∗e-mail:tmki@acm.org

algorithms are still in great demand because of the limited capacity
of memory and computational power of consumer game consoles.
Another important requirement is that the animated character has to
quickly and stably respond to user input. A slow-reacting character
damages game design and displeases users. In other words, we can
never use an “advanced” algorithm to generate realistic animation
if it lacks responsiveness, stability, or efficiency. Consequently, we
should optimize the trade-off between animation quality and com-
putational cost depending on the game design, ensuring quick re-
sponsiveness.

Many game engines employ a data-driven, kinematic algorithm be-
cause of its high controllability. The typical method repeatedly
plays a short motion clip of a straight walk while the position and
orientation of the character’s root is manipulated directly according
to the terrain surface and user input. Although this method requires
the minimal amount of computational resources, it causes critical
visual artifacts such as foot-skating. Motion graph-based and move
tree-based methods generate realistic motion by concatenating short
motion clips. However, these methods have a delayed response to
user input due to the sparse and finite states in the motion graph.

We think that an interpolation-based method is preferable for our
purpose. A new gait motion is efficiently synthesized by interpo-
lating a few sample clips with continuous motion parameters such
as turning angle, speed, and walking style. The animated charac-
ter quickly responds to user input by adjusting the motion parame-
ter. The conventional methods also incorporate the character’s sur-
roundings in the motion parameter. For example, the motion of
walking on a slope is parameterized by the slope angle. On the
other hand, the width and height of the tread are used for control-
ling stair walking. However, it is not always obvious how to param-
eterize a complicated environment. Therefore, the existing methods
require that the set of motion parameters be manually customized
depending on the particular terrain condition.

We propose a practical system for generating an interactive gait an-
imation on uneven terrain in the game environment. Our goal is
to efficiently synthesize natural gait animation of a maneuverable
character on complex uneven terrain as shown in Figure 1 (c), (d)
and (e). To supply these practical demands, our system integrates
an interpolation-based method and a sampling-based precomputa-
tion technique. The foundational data structure of our system is a
parameterized looped motion data structure, called a motion ring,
the principal axis of which represents the time axis, and the cross-
section is the pose space parameterized by the interpolation weight
of motion samples as shown in Figure 1 (a). A continuous cyclic



motion is synthesized by circulating through the motion ring while
smoothly changing the interpolation weight. We use a sampling-
based precomputation algorithm for searching the optimal weight
of every half gait cycle according to the terrain surface and the user
input. This algorithm uses multiple invisible spheres which store
the precomputed relation between interpolation weight and foot-
strike point as shown in Figure 1 (b). As the center of the sphere
is located at each foot-strike point, the contact constraint is sat-
isfied by retrieving the interpolation weight from the sphere that
collides with the environment. Because this approach only uses
a general-purpose collision detection techniques to establish the
ground contact constraints, there is no need for explicitly param-
eterizing the shape of the terrain surface. Our main contribution
is that we build on previous interpolation-based techniques for op-
timizing the trade-off among the animation quality, efficiency, and
maneuverability of the character. We demonstrate our integrated
system efficiently and stably synthesizes an interactive gait anima-
tion on complicated uneven terrain with fewer visual artifacts.

1.1 Overview

A motion ring is a parameterized motion data in which its time in-
dex is circularly looped; rotations of each joint and velocity and
angular velocity of the character’s root are respectively continuous
at every time frame. Its principal axis represents the time axis, and
the cross section is the pose space which is parameterized by inter-
polation weight of motion samples. A motion ring of gait motion
is created by bundling a set of motion loops which are each sin-
gle cycle of looped gait motion. The motion loop is created from a
sample of longer than one gait cycle. Our motion looping algorithm
consists of three processes: dimensionality reduction of the motion
sample, closed-curve fitting to the reduced motion sequence, and
synthesis of the motion loop from the closed-curve (Section 3.1).
Each motion loop is split into two phases by a strike frame which
is the time frame when a swinging foot strikes the ground (Section
3.2). After spatially and temporally aligning motion loops (Section
3.3), the motion ring is compactly created using the dimensionality
reduction technique (Section 3.4).

Once the motion ring is constructed, a continuous gait motion is
synthesized by smoothly changing the interpolation weight during
the circulation through the motion ring. Our gait controller searches
optimal weights at each strike frame in a step-by-step manner:
when a swinging foot strikes the ground, the controller searches
the sequence of interpolation weight until the other foot strikes the
ground. We introduce an invisible sphere, called a contact sphere,
for efficiently precomputing the optimal weight. The contact sphere
stores a weight value and its center is located at the foot-strike point
provided using the stored weight. In the precomputation phase, the
multiple contact spheres are sampled so as to infill the reachable re-
gion of the swinging foot (Section 4.1). The runtime search detects
the contact spheres that collide with the ground, and the optimal
one is selected according to the user control (Section 4.2). The re-
trieved weight is corrected using an iterative algorithm to reduce the
positional error between the foot and the ground (Section 4.3). A
continuous gait motion is synthesized by repeatedly searching the
optimal weight every strike frame, and ease-in and ease-out transi-
tion is used to compute the weight of other intermediate frames.

2 Related work

Automatic gait generation algorithms have been of wide interest to
the graphics and robotics communities. Physical simulations have
the potential to generate an interactive motion which is automati-
cally adapted to environmental changes [Coros et al. 2010; de Lasa
et al. 2010; Lee et al. 2010b; chi Wu Zoran Popović 2010]. Nev-

ertheless, data-driven, kinematic techniques provide more natural
animation, and the kinematic algorithm is superior to a physics-
based method in stability and controllability, which are essential to
interactive games.

Typical game engines generate a continuous gait motion by repeat-
edly playing a single cycle of straight walking. The curved loco-
motion is synthesized by directly transforming the global position
and orientation of the character’s root to obey the user input. The
greatest benefit of this method is the minimum requirement of com-
putational resources. The direct transformation, however, causes
critical visual artifacts such as foot-skating. Inverse kinematics and
other post-editing techniques are therefore used to prevent the mo-
tion artifacts, which also damages the naturalness of the original
motion. Motion graph-based and move tree-based methods gen-
erate a long stream of motion by stitching short clips. The graph
traversal is optimized according to the user input and environmental
constraints [Kovar et al. 2002; Lee et al. 2002; Arikan and Forsyth
2002; Lee and Lee 2004]. Whereas these graph-based techniques
robustly synthesize natural animation in real-time, they lack the re-
activity of the animated character to the user interaction [Reitsma
and Pollard 2007]. Although the maneuverability can be improved
by a graph refinement technique [Ikemoto et al. 2007; Ren et al.
2010] or using reinforcement algorithm [Treuille et al. 2007; Lee
et al. 2009; Lee et al. 2010a], this problem is essentially unavoid-
able owing to the discrete and finite states in the motion graph.

Our system is based on a motion interpolation algorithm which syn-
thesizes a new motion clip from the weighted average of similar
clips. An infinite number of intermediate motions can be efficiently
synthesized with continuous control of interpolation weight. More-
over, scattered data interpolation techniques enable the automatic
optimization of the interpolation weight according to a few control
parameters [Rose et al. 1998; Rose et al. 2001; Kovar and Gleicher
2004; Mukai and Kuriyama 2005]. Due to the prediction error of
these statistical methods, the interpolated motion has to be edited
with inverse kinematics or another post-editing technique to reduce
the motion artifacts [Park et al. 2002; Park et al. 2004]. The alter-
native method heuristically generates pseudo-samples by sampling
the relation between interpolation weight and the end-effector’s po-
sition [Rose et al. 2001; Kovar and Gleicher 2004], which inspired
our basic concept of the contact sphere. Although kinematic algo-
rithms often neglect the dynamic property of human motion, such
as linear and angular momentum, the interpolated motion shows
generally acceptable quality because it is always visually similar to
given samples.

Our system is closely related to interpolation-based gait synthesis
[Sun and Metaxas 2001; Park et al. 2002; Park et al. 2004; Kwon
and Shin 2005]. These methods parameterize short motion clips
by speed and turning angle of locomotion. A continuous gait ani-
mation is generated by concatenating the interpolated clips. They
provide efficient and responsive control of the animated charac-
ter. However, the existing methods have three major factors of
performance degradation. The first is that their basic data unit is
a short motion clip. It means that the interpolated clips are con-
catenated using motion blending or extra motion clips for creating
smooth transitions. The second is that their parameterization al-
gorithm is based on scattered data interpolation which contains a
margin of prediction error, so the resulting animation should be
corrected using inverse kinematics. The final and most important
factor is that extra motion parameters should be defined for dealing
with the environmental conditions. For example, the slope angle
of the terrain, and the height and width of the stairs are used for
parameterizing gait motion. The gap of the terrain is also treated
with the motion parameter. However, it is difficult to automatically
parameterize complicated environments. In fact, previous works
only demonstrate gait animation on stairs and gently sloped ter-



rain using separate controllers customized for those particular en-
vironments. Moreover, online detection of the terrain surface is of-
ten time-consuming and memory-inefficient. Our system alleviates
these performance problems by using a motion ring and a sampling-
based controller.

Many techniques have been proposed that combine motion graphs
and interpolation techniques. A fat-graph [Shin and Oh 2006] con-
sists of hub nodes and fat edges that represent a static pose and
a group of motions parameterized by interpolation weight, respec-
tively. Similarly, a parametric motion graph [Heck and Gleicher
2007] parameterizes both nodes and edges in the motion graph. A
motion controller is proposed to find a near-optimal traversal of
such parameterized graphs using reinforcement learning [Lo and
Zwicker 2008]. Motion ring is assumed to be a variant of these
parametric data structures specialized for cyclic motion. Major dif-
ference of motion ring to these previous data structures is that a
motion ring allows a temporal change of the interpolation weight
during interpolating motion clips. Conventional methods synthe-
size a new motion clip with time-invariant interpolation weight in
order to preserve naturalness of motion. In contrast, since the in-
terpolation weight can be quickly modified at any time-frame in
the motion ring, our approach enhances a maneuverability of the
character in compensation for the slight degradation of animation
quality.

3 Motion ring construction

A motion ring represents a time series of interpolated poses whose
time index is circularly looped, which is constructed by bundling
a set of motion loops of single gait cycles. Given S motion sam-
ples ms(t), t = {1, · · · ,Ts}, s = {1, · · · , S } where Ts denotes the du-
ration of s-th sample, the temporally aligned motion loop ls(t), t =
{1, · · · ,T } is synthesized from each sample, where T is the length of
the principal axis of the motion ring. The interpolated pose at the
t-th frame is represented as a function y(t,w) =

∑
s wsls(t) where

w = t[w1 · · · wS ] is the interpolation weight. The pose vector
y(t,w) consists of the position and orientation of the root, joint ro-
tations, and a time-warp parameter. By the definition of the mo-
tion ring, the pose vector satisfies both the condition of cyclicity;
y(t + T,w) = y(t,w), and the condition of continuity; y(t,w) con-
nects y(t+1,w) with C1 continuity. We here note that the continuity
of the root configuration is guaranteed on its local velocity and an-
gular velocity: the global position and orientation of the root are
actually discontinuous in the motion ring as described in Section
3.3. Their continuity is ensured by aligning the local coordinate
system as described in Section 4.

3.1 Motion looping in reduced space

We here introduce an automatic method for creating a motion loop
from a motion sample. A motion loop is synthesized by extracting
a single gait cycle from a motion sample of longer than one cycle
and deforming it so that the final frame smoothly connects to the
first. A conventional method creates a smooth transition around the
connecting frames using motion blending technique with adequate
transition length. However, the transition length and the blending
function should be empirically optimized for creating natural mo-
tion transition [Wang and Bodenheimer 2008]. In contrast, an auto-
mated method extracts a single gait cycle using a motion segmen-
tation technique, and generates optimal transition motion using a
spacetime optimization technique. This complex algorithm, how-
ever, is too costly because there is only small variation among mul-
tiple gait cycles in human motion. Therefore, we use a simplified
version of motion segmentation and spacetime optimization based
on a dimensionality reduction technique. Our basic idea is to gen-

(a) Original curve (b) Nearest-neighbor search

(c) Single cycle extraction (d) Closed-curve fitting

Smoothed region

Time

Figure 2: Looping of a running motion in low-dimensional space.
(a) Low-dimensional curve of a running motion. (b), (c) Extraction
of the single cycle using nearest neighbor search. (d) Closed-curve
fitting using least-square method.

erate a low-dimensional closed-curve which approximates the orig-
inal motion sequence in the reduced space. This approach signifi-
cantly reduces the computational complexity because we can now
use a simple curve fitting algorithm to generate the closed-curve.

Our system first computes a mapping from a motion sample ms(t)
to a low-dimensional curve xs(t) using classical multi-dimensional
scaling (CMDS) [Shin and Lee 2006] as illustrated in Figure 2(a),
where the dimensionality of xs(t) is set to 4. Secondly, the single
cycle of the curve is extracted by searching for the nearest the two
points based on the condition of cyclicity (Figure 2 (b), (c)). The
distance between two points is computed by the weighted sum of
Euclidean distance ‖xs(t)− xs(t′)‖ and the inverse of the inner prod-
uct of the differential vectors 1.0/{xs(t + 1) − xs(t − 1)} · {xs(t′ +
1) − xs(t′ − 1)}. These two types of distance metrics evaluate the
dissimilarity of static pose and that of local velocity of the whole
body, respectively. Next, the smooth transition around the gap is
generated using least-square fitting. We use a biquadratic Bézier
splines for the approximation. Given the time region [tb, te] around
the gap, the spline control points ck are uniquely determined by the
least square method:

arg min
c1 ,···cK

te∑
t=tb

‖xs(t) −
4∑

k=1

Bk(t)ck‖, (1)

where Bk(t) is a basis function of the biquadratic Bézier spline.
The new curve x̃(t) is then generated by the spline interpolation
x̃(t) =

∑4
k=1 Bk(t)ck. The remaining free parameter is the time re-

gion [tb, te]. Any region that is too short causes a discontinuous
change in the resulting motion loop, and any region that is too long
damages the original motion. The smoothing region [tb, te] is there-
fore determined to minimize the following objective function:

arg mintb ,te α‖2xs(tb) − xs(tb − 1) − x̃s(tb + 1)‖ (2)

+ α‖2xs(te) − xs(te + 1) − x̃s(te − 1)‖

+ (te − tb)−1/2

⎧⎪⎪⎨⎪⎪⎩
te∑

t=tb

‖xs(t) − x̃s(t)‖2
⎫⎪⎪⎬⎪⎪⎭

1/2

,

where α denotes the weight coefficient, the first and second terms
evaluate the continuity at the boundary points, and the third term
is the root mean squared error from the original curve. We use the



brute force algorithm to search for the optimal solution, and α is set
to 10.0.

Finally, the motion loop l̃s(t), t = {1, · · · , T̃s}, where T̃s denotes the
duration of the single cycle, is synthesized from the closed-curve
x̃s(t) using a non-parametric regression technique. The new pose at
the t-th frame is synthesized by the weighted average of all poses
in the original motion as l̃s(t) =

∑
bims(i) where bi is a blending

weight. For the root configuration, this interpolation is performed in
the velocity and angular velocity space, and position and orientation
are obtained by the temporal integration. We use simple kriging
[Wackernagel 2003] to optimize the blending weight as follows:

[
b
λ

]
=

[
X 1Ts ,

t1Ts 0

]−1 [
χ
1

]
, (3)

where b = t[b1 · · · bTs ] is blending weight vector, X is a Ts × Ts

distance matrix in which Xi, j = ‖xs(i)−xs( j)‖, χ is a Ts dimensional
distance vector in which χi = ‖xs(i) − x̃s(t)‖, 1Ts is a column vector
of Ts ones, λ is a Lagrange multiplier, and the last element of the
vector in the right-hand side constrains the weights bi sum up to
one.

3.2 Foot-strike detection

Before creating a motion ring, a strike frame, which is the time
frame when a swinging foot strikes the ground, is detected in
each motion loop. We use a simple algorithm which detects zero-
crossings in the acceleration space of the feet [Bindiganavale and
Badler 1998]. If multiple frames are detected, our system selects
the most appropriate two frames at which the global velocity of
the swinging foot is minimized. The temporal difference between
those two frames is also constrained so as to be almost equal to the
duration of a half of one gait cycle.

3.3 Motion alignment

A motion ring is composed of a set of spatially and temporally
aligned motion loops ls(t). All motion loops l̃s(t) are temporally
aligned using the motion registration algorithm based on dynamic
time-warping [Kovar and Gleicher 2003] with key-time constraints
on strike frames [Rose et al. 1998]. The incremental time-warping
parameter [Kovar and Gleicher 2003] is added to the pose vector.

The spatial alignment is separately performed on each subsequence
of half a gait cycle. The time-aligned motion loop is first split into
two phases by the strike frame, and the local coordinate system
is then defined for each phase as shown in Figure 3. At the first
frame of each phase, the local coordinate system is computed so
that the local x-axis (one of the horizontal axis) is parallel to the
facing direction of the character and the local origin is located at the
position of the supporting foot. The position and orientation of the
character’s root in each phase are expressed in the local coordinate
system. As a result, the supporting foot is always located on the
local origin at the strike frame for arbitrary interpolation weight.

3.4 Construction of compact motion ring

The data size of the motion ring increases proportional to the num-
ber of motion samples, the number of joints, and the number of
time frames. We first eliminate redundant motion samples when
many samples are available. We use the greedy algorithm to se-
lect a reduced set of motion samples. The initial element of the
reduced set is the motion sample whose average stride length of
two steps is smallest in all samples. Our algorithm then selects the
most dissimilar sample from the elements in the reduced set, where
the dissimilarity is computed using the distance between foot-strike

x-axis

Origin
x-axis

Origin

Strike frame

Figure 3: Local coordinate system of the animated character in
which the root configurations of half gait cycle is described.

points in the local coordinate system. This iteration is terminated
until the distance is shorter than a given threshold, which we set to
30cm.

We use principal geodesic analysis (PGA) [Tournier et al. 2009]
to reduce the dimensionality of joint rotations, where the number
of modes is automatically determined by keeping 99% of the orig-
inal variations. We here note that the root configuration and the
time-warp parameter are not compressed since they have greater
influence on the animation quality. In the runtime phase, joint ro-
tations are synthesized by interpolating the reduced principal com-
ponents and decompressing it. The position and orientation of the
root node and the time-warp parameter are separately interpolated.
The data compression increases the memory efficiency as well as
the computational performance of the online motion interpolation,
even though the decompression requires extra computational cost.

4 Gait synthesis using motion ring

A continuous gait motion is synthesized by circulating through the
motion ring while changing the interpolation weight. To efficiently
search the sequence of interpolation weight that maintains ground
contact constraints, we use a contact sphere for precomputing the
relation between interpolation weight and foot-strike point. A con-
tact sphere stores the interpolation weight with which the swinging
foot of an interpolated motion strikes the sphere’s center. A set of
contact spheres is precomputed so as to infill the reachable region
of the swinging foot. In the runtime phase, the interpolation weight
at the next strike frame is retrieved from a contact sphere which
collides with the ground. If multiple spheres are available, the op-
timal one is selected according to the user input. The interpolation
weight is finally corrected by the iterative algorithm based on statis-
tical analysis. The interpolation weight at other intermediate frames
is computed using the ease-in and ease-out transition.

4.1 Contact sphere generation

A set of contact spheres is generated using a sampling technique.
The straightforward method performs the sampling in the weight
space. Given i-th sampled weight wi, the pose vector is interpolated
at the strike frame. Next, the foot-strike point pi is computed in the
local coordinate system, at where a contact sphere with radius r is
then generated. We obtain a set of contact spheres {pi,wi, r}, i ∈
{1, · · · ,N} by repeating this sampling process N times.

For uniformly sampling the foot-strike points, we employ a scat-
tered data interpolation to predict the interpolation weight from
the sampling point. The reachable region of the swinging foot is
first approximated by a bounding box of all the sample’s foot-strike
points p̂s as shown in Figure 4. The sampling points pi are then
arranged in the regular lattice pattern in the bounding box. The



(a) Foot-strike position
      of motion samples

(b) Sampling contact spheres

Suporting fooSuporting foot

SwinginSwinging
foofoot

Figure 4: Sampling of contact spheres.

interpolation weight wi at the i-th sampling point pi is predicted us-
ing simple kriging, similar to Equation 3. The prediction equation
is expressed as follows:

[
wi

λ

]
=

[
P 1S ,

t1S 0

]−1 [
ρ
1

]
, (4)

where P is the S × S distance matrix in which Ps,t = ‖p̂s − p̂t‖,
ρ is the S dimensional distance vector in which ρs = ‖pi − p̂s‖,
1S is a column vector of S ones. Since the foot-strike point of the
interpolated motion is actually located at different points p′i owing
to the prediction error, the contact sphere is generated at the actual
position as {p′i ,wi, r}. As a result, the contact spheres are arranged
within a smaller region than the bounding box as shown in Figure
4 (b).

4.2 Optimal weight search

A basic method to search the circulation path through the motion
ring is to determine the interpolation weight every half gait cycle;
at a strike frame τi, the sequence of interpolation weight until the
next strike frame τi+1 is searched in a step-by-step manner. We
explain this basic method here for notational convenience, although
we will introduce a more responsive algorithm in Section 4.4. First,
the runtime computation detects the contact spheres colliding with
the ground at τi, which is illustrated by the green spheres in Figure
5. The optimal sphere is then selected among the colliding ones
according to the user control, and the interpolation weight w(τi) is
retrieved from the optimal sphere. For instance, if the user directs
the character to turn right, a sphere on the right side will be selected,
as illustrated by the red sphere in Figure 5. The stride length is
controlled by the distance of the contact sphere from the origin of
the local coordinate system.

Once w(τi+1) is determined, the interpolation weight at other inter-
mediate frames w(t) where τi < t < τi+1 are calculated using ease-
in and ease-out transition as w(t) = (1 − H(t))w(τi) + H(t)w(τi+1)
where H(t) is the transition function. We use a cubic polynomial
H(t) = t′2−3t′3+1, t′ = (t−τi)/(τi+1−τi) for the smooth transition.

The pose vector at each time frame is synthesized using the inter-
polation weight. The time frame t is monotonically advanced with
the incremental time-warp parameter [Kovar and Gleicher 2003].
The contact sphere and the character are both transformed from the
local coordinate system to the global coordinate system. The coor-
dinate transformation can be simply updated every strike frame so
that the local origin and local x-axis match the global position of
the supporting foot and the global facing direction of the character,
respectively.

(a) Selection of optimal contact sphere (b) Interpolated pose
at the strike frame at the next strike frame

Figure 5: Weight search at strike frame. (a) The interpola-
tion weight is retrieved from the optimal sphere colored in red,
which satisfies the directional control, selected among the collid-
ing spheres colored in green. (b) The swinging foot robustly strikes
the ground at the next strike frame.

4.3 Iterative weight correction

By synthesizing the motion using the interpolation weight of the
contact sphere, the foot-strike point is located adjacent to the
ground. The spatial error up to the radius of the contact sphere
can be corrected using a stock IK solver, but kinematic solver often
damages the animation quality. For example, the traditional method
modifies the foot trajectory so as to satisfy the contact constraints,
and edits the joint rotations using the IK solver. However, it is not
easy to optimize where and how long the ground contact is con-
strained for generating smooth and natural motion. Moreover, most
IK techniques require tedious parameter tuning to generate natural
movement.

We introduce an iterative algorithm to correct the interpolation
weight rather than directly adjusting joint rotations. Our system it-
eratively corrects the interpolation weight so that the swinging foot
strikes “somewhere” on the ground. Each iteration starts with the
projection of the foot position f onto the ground. The projected
point g is searched by intersecting the rays passing through the foot
position. The optimal weight correction �w is then predicted based
on Equation 4 as follows:

[ �w
λ

]
= β

[
P 1S

t1S 0

]−1 [ �ρ
0

]
, (5)

where �ρ is the displacement of the distance vector in which
�ρs = ‖g − p̂s‖ − ‖f − p̂s‖, and β is the positive scaling coefficient
less than one. We set the scaling coefficient to β = 0.5 since large β
sometimes results in unstable convergence owing to the prediction
error. This equation is derived by subtracting the prediction equa-
tion (4) with respect to the foot point p from that with respect to
the projected point g. This linear system is efficiently solved thanks
to the precomputable inverse matrix of the right-hand side. The
weight w is iteratively updated as w + �w→ w until the positional
error ‖g − f‖ is less than a threshold ε, which we set to 3 cm. This
weight correction rapidly converges to the feasible solution in a few
iterations. Due to the small degree of the weight correction �w, our
system guarantees the synthesized motion always falls within the
valid internal space of the motion ring.

4.4 Practical implementation

Responsive weight search We have explained the basic al-
gorithm to search the interpolation weight every half gait cycle in



Section 4.2. This method causes time delay in response to user in-
put because the circulation path cannot be changed between strike
frames. To reduce the control delay up to the duration of a half
gait cycle, the interpolation weight is immediately recomputed ac-
cording to the user input while avoiding the discontinuous change
in synthesized motion. Given the user input at time frame t where
τi < t < τi+1, the weight of the next strike frame w(τi+1) is modified
by re-selecting the optimal sphere from the colliding ones. The col-
lision detection can be omitted in this recomputation because the
contact spheres remain stationary between the strike frames. The
weight of the previous strike frame w( fc) is then modified using
linear extrapolation as w(τi) = {w(t) − H(t)w(τi+1)}/{1 − H(t)} in
order to ensure the consistency of the current weight w(t). This
method, however, often causes discontinuous change in the syn-
thesized motion. When the user control is applied just before the
next strike frame, the interpolation weight is drastically changed in
a short period and results in an impossible velocity of the move-
ment. To avoid this problem, user input is ignored for a certain time
period before each strike frame. We set the time length to the du-
ration of a quarter gait cycle for the following two reasons. First,
the duration of quarter gait cycle is short enough for the interactive
games. Secondly, a mid-swing phase of human locomotion shows
smaller variation in pose than that around a strike frame. There-
fore, a recomputation of the circulation path before the mid-swing
phase results in a relatively small change in motion. In contrast, the
recomputation around the strike frame causes a noticeable change
relative to displacement magnitude of the interpolation weight.

Combination with direct transformation Since our standard
method is fully based on motion interpolation, many motion sam-
ples are required for dealing with a variety of turning angles, stride
lengths, and step heights. For reducing the number of motion sam-
ples, we can employ the concept of [Sun and Metaxas 2001] that
combines motion interpolation and direct transformation, which we
call a combined method. This method synthesizes straight walk on
uneven terrain using motion interpolation and the curved locomo-
tion is generated by rotating the character’s root. The set of motion
samples consists of only straight walks, and the contact spheres are
generated on the sagittal plane of the character. Given the user in-
put, the character’s local coordinate system is rotated around the
vertical axis which passes through its origin. This rotation causes
less foot-skating because the supporting foot is located on the same
origin. The interpolation weight is then recomputed using the re-
sponsive search algorithm with detection of collisions between of
transformed contact spheres and the terrain surface. Another ad-
vantage of the combined method is that the user control is exactly
satisfied using the direct transformation instead of the discrete se-
lection among contact spheres. A disadvantage of the combined
method is the degradation of the naturalness of synthesized motion
in compensation for the improvements in the memory efficiency
and controllability.

Efficient collision detection The bottleneck of our system is
the collision detection between contact spheres and terrain geom-
etry. We use a well-known data structure, called box-tree, to ac-
celerate the collision detection [Ericson 2005]. By representing the
environmental geometry using a binary box-tree, the computational
cost is significantly reduced from O(NG) to O(N log2 G) where G
denotes the number of polygons in the environment. For better per-
formance, we use a two-step traversal of the box-tree using a bound-
ary sphere of all contact spheres. The first breadth-first traversal
detects the nodes in the box-tree which collide with the boundary
sphere. This traversal terminates at user-specified depth d. The sec-
ond depth-first traversal resumes from the collided nodes on depth
d, and checks whether each contact sphere collides with any leaf
node. As this two-step traversal requires O(d + (log G − d)N) com-
putational steps, the optimal depth d is determined so as to satisfy

Figure 6: The physical environment in the motion capture studio.
The subject walked on the flat floor and several sets that imitate the
spiral stairs.

1

2

4
3

2

2

2

3

3

(a) Motion sample (b) Synthesized motion loop

Figure 7: Looping of a walking-up motion on the spiral stairs. The
motion loop is synthesized from the segment containing the second
and third foot-strikes.

(log G−d+1)N−1 ≥ (log G−d)N ≤ (log G−d−1)N+1. For further
improvement of the worst frame rate, the second traversal is per-
formed over several time frames before the strike frame. When F
frames are used for this time-sharing processing, O((log G−d)N/F)
computational steps are required at each frame. We set F to the
duration of one quarter of a gait cycle because the user input is ne-
glected for that duration by the responsive search algorithm.

5 Experimental results

5.1 Data acquisition

We built physical sets in our motion capture studio. Each set was
designed to imitate eight steps of straight stairs or spiral stairs as
shown in Figure 6. We used two different curvatures for the spiral
stairs which drew a quarter or a half of a circle every eight steps. We
also used two different gradients for each of the stairs. The subject
walked on the flat floor, and walked up and down on each set with
two different stride lengths. We recorded a total of 43 motion clips
of the 81 DOF human figures at 60 Hz for walking and running
motions respectively. Each captured motion consists of between 5
and 9 steps, and the middle 3 steps are used as a motion sample for
constructing the motion ring.

5.2 Motion ring construction

Figure 7 (a) illustrates a walking-up motion on the spiral stairs,
which shows four foot-strikes. The motion loop is synthesized by
extracting the segment which contains the second and third foot-
strikes as illustrated in Figure 7 (b). Our motion looping technique
generates a smooth and foot-skate-free motion loop. A continuous
stair walk of an arbitrary number of steps can be generated by re-
peatedly connecting it without motion blending.

Our standard method selects 15 and 16 motion samples as the re-
duced set for constructing motion rings of walking and running mo-
tions, respectively. The 75-dimensional joint rotation is approxi-



mated by 42-dimensional principal components. Each motion sam-
ple is temporally aligned to have 60 frames (one second). The data
size of each motion ring is less than 200 kB in a single-precision
floating point format. On the other hand, the combined method
constructs about 130 kB of motion rings from 11 motion samples
of straight walking and straight running, respectively. The other
parameters are equal to those of the standard method.

5.3 Gait synthesis in complex environments

We constructed three types of virtual environments; bumpy terrain,
continuous stairs with irregular step height, and random stepping
stones. The user controlled the turning angle and stride length of
the locomotion using an analog joystick. We observed that the con-
trol delay to the joystick input is almost negligible, and the syn-
thesized motion is smoothly changed according to the user input
and the shape of terrain surface. However, the animated characters
sometimes fail to obey the user input, especially on the stairs and
stepping stones, because the ground contact constraints take prior-
ity over the user input. This result shows that the controllability of
our system largely depends on the configuration of contact spheres.

We manually connects multiple motion rings of walking, running,
and resting motions. These different behaviors are switched us-
ing smooth motion transition according to the joystick command.
The motion ring of resting motion is constructed using 9 motion
samples. Each motion sample maintains the same feet position
throughout, so every time frames of the motion ring are regarded as
strike frame and one set of contact spheres is shared by all of them.
The manually-connected motion rings provided quick and smooth
transition between different behaviors, but we observed that it of-
ten violates the physical validity such as momentum conservation.
This problem could be alleviated by incorporating the mechanism
to synthesize the natural transition based on sophisticated motion
interpolation [Safonova and Hodgins 2005] or precomputation [Lo
and Zwicker 2008].

5.4 Performance evaluation

The computational performance of our standard method and com-
bined method are evaluated by measuring the turnaround time to
synthesize animation frame excluding rendering time. We mea-
sured the turnaround time for five minutes on an Intel Xeon 3.3GHz
PC using one core. The number of contact spheres is 5×5×5 for the
standard method and 5 × 5 for the combined method, respectively.
The radius of all contact spheres is fixed to r = 20 cm. The test
environment is the bumpy terrain as shown in Figure 1 (c), which
consists of 10, 000 polygons.

Table 1 summarizes the statistics of the computational performance,
and Figure 8 shows the detailed profile of the turnaround time for
800 frames. These result shows that our system takes more compu-
tational time than that of existing methods [Park et al. 2002; Park
et al. 2004; Mukai and Kuriyama 2005; Kwon and Shin 2005].
We believe that this performance degradation is reasonable because
our system provides a more general solution to deal with complex
game environments, while still achieving a practical performance
and controllability. Both the standard and combined methods show
the worst computational load around the strike frames at which the
weight search and weight correction are executed. On the other
hand, there is no significant difference in the computational perfor-
mance between them. Although the combined method reduces the
computational cost of motion interpolation and collision detection
thanks to fewer motion samples and contact spheres, it requires ex-
tra computation to execute the collision detection whenever the user
control is applied. In fact, the combined method takes much com-
putational time when synthesizing curved locomotion as shown in

Table 1: Statistics of the computational performance of our stan-
dard and combined methods.

[frames/sec]
avg. sd. min. max.

Standard method 27,071 3,588 15,412 31,400
Combined method 26,939 3,165 15,821 32,690

0 200 400 600 800

30
40

50
60

70

curve curvestraightstraight

Computational time
          [usec / frame]

Combined methodStandard method

Frame

Figure 8: Profile of computational time of our standard and com-
bined methods.

Figure 8. These results indicate that the standard method can be
used in most cases because of the higher quality of synthesized an-
imation and almost the same computational cost. The combined
method is useful when data reduction or high controllability of the
character is demanded even if the animation quality is sacrificed.

6 Conclusions

We have proposed an integrated system for synthesizing gait motion
in interactive game environments. The fundamental data structure
of our system is a parameterized motion loop, called a motion ring.
The motion looping algorithm combines a dimensionality reduction
technique and a closed-curve fitting algorithm by which a motion
loop is automatically generated from a given sample lasting longer
than one gait cycle. The motion ring is constructed by bundling a
reduced set of motion loops whose redundancy is also eliminated
using statistical analysis. A continuous gait motion is efficiently
synthesized by circulating through the compact motion ring. Our
gait controller searches the interpolation weight using precomputed
contact spheres and an iterative weight correction algorithm for pre-
venting foot-skating on complex, uneven terrain. Our system guar-
antees that the animated character rapidly responds to user input
within the duration of a quarter gait cycle.

Our system can be applied for synthesizing a wider variety of cyclic
motions other than gait motion. We have demonstrated that differ-
ent behaviors can be integrated by simply connecting multiple mo-
tion rings. However, adequate connection between motion rings is
manually created with tedious labor in our current system. We will
investigate an automated method to organize a graph structure of
multiple motion rings of different behaviors.

Our future work also includes the development of a general frame-
work of environment-driven motion synthesis. Our gait controller
measures only the shape of the terrain surface using contact spheres.
In practical application, however, the terrain is often annotated with
geological conditions. For example, the ground is covered with
grass, puddles, snow, and sand, and such annotation data is embed-
ded in the environment itself. Our system is well suited for pre-
cisely retrieving such semantic information from the terrain and an
object in order to generate reactive behavior to the environmental



conditions, the concept of which is similar to motion patches [Lee
et al. 2006]. We will examine the applicability of our system to
environment-driven motion control.

Acknowledgement

We would like to thank Yutaka Miyauchi and Motion Capture
Group at Square Enix for their assistance in the motion capture ses-
sion, and anonymous reviewers for their constructive comments.
We also thank our colleagues for their support.

References

Arikan, O., and Forsyth, D. A. 2002. Interactive motion gen-
eration from examples. ACM Transactions on Graphics 21, 3,
483–490.

Bindiganavale, R., and Badler, N. I. 1998. Motion abstraction and
mapping with spatial constraints. In Lecture Notes In Computer
Science, vol. 1537, 70–82.

chiWu Zoran Popović, J. 2010. Terrain-adaptive bipedal locomo-
tion control. ACM Transactions on Graphics 29, 4, 72.

Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized
biped walking control. ACM Transactions on Graphics 29, 4,
130.

de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-
based locomotion controllers. ACM Transactions on Graphics
29, 4, 131.

Ericson, C. 2005. Real-Time Collision Detection. Morgan Kauf-
mann.

Heck, R., and Gleicher, M. 2007. Parametric motion graphs. In
Proc. of ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games, 129–136.

Ikemoto, L., Arikan, O., and Forsyth, D. 2007. Quick transitions
with cached multi-way blends. In Proc. of ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 145–151.

Kovar, L., and Gleicher, M. 2003. Flexible automatic mo-
tion blending with registration curves. In Proc. of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
2003, 214–224.

Kovar, L., and Gleicher, M. 2004. Automated extraction and pa-
rameterization of motions in large data sets. ACM Transactions
on Graphics 23, 3, 559–568.

Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM
Transactions on Graphics 21, 3, 473–482.

Kwon, T., and Shin, S. Y. 2005. Motion modeling for on-line lo-
comotion synthesis. In Proc. of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 29–38.

Lee, J., and Lee, K. H. 2004. Precomputing avatar behavior from
human motion data. In Proc. of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 79–87.

Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard,
N. S. 2002. Interactive control of avatars animated with human
motion data. ACM Transactions on Graphics 21, 3, 491–500.

Lee, K. H., Choi, M. G., and Lee, J. 2006. Motion patches: Build-
ing blocks for virtual environments annotated with motion data.
ACM Transactions on Graphics 25, 3, 898–906.

Lee, Y., Lee, S. J., and Popović, Z. 2009. Compact character con-
trollers. ACM Transactions on Graphics 28, 5, 169.

Lee, Y., Wampler, K., Bernstein, G., Popović, J., and Popović, Z.
2010. Motion fields for interactive character animation. ACM
Transactions on Graphics 29, 5, 138.

Lee, Y., Kim, S., and Lee, J. 2010. Data-driven biped control. ACM
Transactions on Graphics 29, 4, 129.

Lo, W.-Y., and Zwicker, M. 2008. Real-time planning
for parameterized human motion. In Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 29–
38.

Mukai, T., and Kuriyama, S. 2005. Geostatistical motion interpo-
lation. ACM Transactions on Graphics 24, 3, 1062–1070.

Park, S. I., Shin, H. J., and Shin, S. Y. 2002. On-line locomotion
generation based on motion blending. In Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

Park, S. I., Shin, H. J., hoon Kim, T., and Shin, S. Y. 2004. On-line
motion blending for real-time locomotion generation. Computer
Animation and Virtual Worlds 15, 3-4, 125–138.

Reitsma, P. S. A., and Pollard, N. S. 2007. Evaluating motion
graphs for character animation. ACM Transactions on Graphics
26, 4, 18.

Ren, C., Zhao, L., and Safonova, A. 2010. Human motion synthesis
with optimization-based graphs. Computer Graphics Forum 29,
2, 545–554.

Rose, C. F., Bodenheimer, B., and Cohen, M. F. 1998. Verbs and ad-
verbs: Multidimensional motion interpolation’. IEEE Computer
Graphics and Applications 18, 5, 32–40.

Rose, C. F., Sloan, P.-P. J., and Cohen, M. F. 2001. Artist-
directed inverse-kinematics using radial basis function interpo-
lation. Compuer Graphics Forum 20, 3, 239–250.

Safonova, A., and Hodgins, J. K. 2005. Analyzing the physical
correctness of interpolated human motion. In Proc. of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
171–180.

Shin, H. J., and Lee, J. 2006. Motion synthesis and editing in low-
dimensional spaces. Computer Animation and Virtual Worlds 17,
3-4, 219–227.

Shin, H. J., and Oh, H. S. 2006. Fat graphs: Constructing an
interactive character with continuous controls. In Proc. of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
291–298.

Sun, H. C., andMetaxas, D. N. 2001. Automating gait generation.
In Proc. of SIGGRAPH 2001, 261–270.

Tournier, M., Wu, X., Courty, N., Arnaud, E., and Reveret, L.
2009. Motion compression using principal geodesics analysis.
Computer Graphics Forum 28, 2, 337–346.

Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal char-
acter animation with continuous control. ACM Transactions on
Graphics 27, 3, 7.

Wackernagel, H. 2003. Multivariate Geostatistics. Springer Var-
lag.

Wang, J., and Bodenheimer, B. 2008. Synthesis and evaluation of
linear motion transitions. ACM Transactions on Graphics 27, 1,
1.


