Improved Geometric Specular Antialiasing (Supplemental Document)

Yusuke Tokuyoshi
SQUARE ENIX CO., LTD.
tokuyosh@square-enix.com

Anton S. Kaplanyan
Facebook Reality Labs
kaplanyan@fb.com

1 Non-Axis-Aligned Anisotropic BRDF

Shadowing-masking Function. The Smith masking function [Smi67] is defined as $G_{1}(\mathbf{i}, \mathbf{h})=\frac{\chi^{+}(\mathbf{i} \cdot \mathbf{h})}{1+\Lambda(\mathbf{i})}$, where $\chi^{+}(\mathbf{i} \cdot \mathbf{h})$ is the Heaviside function: 1 if $\mathbf{i} \cdot \mathbf{h}>0$ otherwise $0 . \Lambda(\mathbf{i})$ is a function which depends on the NDF model. The heightcorrelated masking-shadowing function [Hei14] is given as

$$
G_{2}(\mathbf{i}, \mathbf{o})=\frac{\chi^{+}(\mathbf{i} \cdot \mathbf{h}) \chi^{+}(\mathbf{o} \cdot \mathbf{h})}{1+\Lambda(\mathbf{i})+\Lambda(\mathbf{o})} .
$$

In this paper, $\Lambda(\mathbf{o})$ for the anisotropic GGX NDF model is described in the later paragraphs.

Axis-aligned Anisotropic GGX BRDF The axis-aligned anisotropic GGX NDF is defined as follows:

$$
D(\mathbf{h})=\frac{\chi^{+}\left(h_{z}\right)}{\pi \alpha_{x} \alpha_{y}\left(\frac{h_{x}^{2}}{\alpha_{x}^{2}}+\frac{h_{y}^{2}}{\alpha_{y}^{2}}+h_{z}^{2}\right)^{2}} .
$$

For this NDF, the masking-shadowing function is obtained using the following function:

$$
\Lambda(\mathbf{o})=-0.5+\frac{\sqrt{\alpha_{x}^{2} o_{x}^{2}+\alpha_{y}^{2} o_{y}^{2}+o_{z}^{2}}}{2\left|o_{z}\right|},
$$

where $\left[o_{x}, o_{y}, o_{z}\right]$ is the outgoing direction \mathbf{o} in tangent space.
Non-axis-aligned Anisotropic GGX BRDF For shading antialiasing, we use the 2×2 roughness matrix \mathbf{A} instead of α_{x} and α_{y}. The anisotropic NDF can be generalized using this matrix [Hei14] as follows:

$$
D(\mathbf{h})=\frac{\chi^{+}\left(h_{z}\right)}{\pi \sqrt{\operatorname{det}(\mathbf{A})}\left(\left[h_{x}, h_{y}\right] \mathbf{A}^{-1}\left[h_{x}, h_{y}\right]^{\mathrm{T}}+h_{z}^{2}\right)^{2}} .
$$

For this NDF, the masking-shadowing function is obtained using the following function:

$$
\Lambda(\mathbf{o})=-0.5+\frac{\sqrt{\left[o_{x}, o_{y}\right] \mathbf{A}\left[o_{x}, o_{y}\right]^{\mathrm{T}}+o_{z}^{2}}}{2\left|o_{z}\right|} .
$$

For this microsurface model, the slope of a microsurface is stretched in the directions of the eigenvectors of the roughness matrix \mathbf{A}. The stretching scale for each eigenvector is the reciprocal square root of the eigenvalue of \mathbf{A}.

Practical Implementation. The determinant $\operatorname{det}(\mathbf{A})$ can produce a large precision error due to floating point arithmetic, especially when using an elongated kernel for NDF filtering. To improve the numerical stability, this paper clamps $\operatorname{det}(\mathbf{A})$ by a small value τ for NDF :

$$
D(\mathbf{h})=\frac{\chi^{+}\left(h_{z}\right)}{\pi \sqrt{\max (\operatorname{det}(\mathbf{A}), \tau)}\left(\left[h_{x}, h_{y}\right] \mathbf{A}^{-1}\left[h_{x}, h_{y}\right]^{\mathrm{T}}+h_{z}^{2}\right)^{2}} .
$$

To compute \mathbf{A}^{-1}, we also use this clamped determinant as follows:

$$
\mathbf{A}^{-1}=\frac{\operatorname{adj}(\mathbf{A})}{\max (\operatorname{det}(\mathbf{A}), \tau)}
$$

For NDF filtering, since $\sqrt{\operatorname{det}(\mathbf{A})}$ must be equal or greater than the original squared roughness parameter, we use $\tau=\alpha_{x}^{2} \alpha_{y}^{2}$.

2 Derivation of the Jacobian Matrix

Let ψ_{x} be an angle on the great circle passing through the halfvector \mathbf{h} and normal \mathbf{n}, and ψ_{y} be an angle on the great circle passing through the halfvector \mathbf{h} and $\frac{\mathbf{n} \times \mathbf{h}}{\|\mathbf{n} \times \mathbf{h}\|}$: then its Cartesian coordinate is given as

$$
\begin{align*}
& m_{x}=\cos \psi_{y} \sin \psi_{x} \\
& m_{y}=\sin \psi_{y} \tag{1}\\
& m_{z}=\cos \psi_{y} \cos \psi_{x}
\end{align*}
$$

Thus, the Jacobian matrix of the transformation from $\left[\psi_{x}, \psi_{y}\right]$ to $\left[m_{x}, m_{y}\right]$ at $\psi_{x}=0$ and $\psi_{y}=0$ is yielded as

$$
\begin{align*}
J_{\circ \rightarrow \perp^{m}} & =\left[\begin{array}{cc}
\frac{\partial m_{x}}{\partial \psi_{x}} & \frac{\partial m_{x}}{\partial \psi_{y}} \\
\frac{\partial m_{y}}{\partial \psi_{x}} & \frac{\partial m_{y}}{\partial \psi_{y}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \psi_{y} \cos \psi_{x} & -\sin \psi_{y} \sin \psi_{x} \\
0 & \cos \psi_{y}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] . \tag{2}
\end{align*}
$$

The tangent-space halfvector can be represented using a polar coordinate system $[\theta, \phi]$. Using this θ and this ϕ, the rotation from the local-space halfvector to tangent-space halfvector is given by

$$
\left[\begin{array}{l}
h_{x} \tag{3}\\
h_{y} \\
h_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta \cos \phi & -\sin \phi & \sin \theta \cos \phi \\
\cos \theta \sin \phi & \cos \phi & \sin \theta \sin \phi \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{l}
m_{x} \\
m_{y} \\
m_{z}
\end{array}\right]
$$

where $\left[m_{x}, m_{y}, m_{z}\right]=[0,0,1]$ (i.e., $\psi_{x}=0$ and $\psi_{y}=0$). Therefore, the Jacobian matrix of the orthographic projection is derived as

$$
\begin{align*}
J_{\circ \rightarrow \perp}=J_{\perp^{m} \rightarrow \perp} J_{\circ \rightarrow \perp^{m}} & =\left[\begin{array}{ll}
\frac{\partial h_{x}}{\partial m_{x}} & \frac{\partial h_{x}}{\partial m_{y}} \\
\frac{\partial h_{y}}{\partial m_{y}} & \frac{\partial h_{y}}{\partial m_{y}}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\cos \theta \cos \phi & -\sin \phi \\
\cos \theta \sin \phi & \cos \phi
\end{array}\right] \\
& =\frac{1}{\sqrt{1-h_{z}^{2}}}\left[\begin{array}{cc}
h_{x} h_{z} & -h_{y} \\
h_{y} h_{z} & h_{x}
\end{array}\right] . \tag{4}
\end{align*}
$$

The slope of the halfvector is given as

$$
\left[\begin{array}{ll}
h_{x}^{\|} & h_{y}^{\|}
\end{array}\right]=\left[\begin{array}{ll}
-\frac{h_{x}}{\sqrt{1-h_{x}^{2}-h_{y}^{2}}} & \left.-\frac{h_{y}}{\sqrt{1-h_{x}^{2}-h_{y}^{2}}}\right] . .8 . . \tag{5}
\end{array}\right.
$$

Therefore, the Jacobian matrix of the transformation from the projected unit disk to slope space is yielded as follows:

$$
J_{\perp \rightarrow \|}=\left[\begin{array}{cc}
\frac{\partial h_{x}^{\|}}{\partial h_{x}} & \frac{\partial h_{x}^{\|}}{\partial h_{y}} \tag{6}\\
\frac{\partial h_{y}^{\|}}{\partial h_{x}} & \frac{\partial h_{y}^{\|}}{\partial h_{y}}
\end{array}\right]=-\frac{1}{h_{z}^{3}}\left[\begin{array}{cc}
1-h_{y}^{2} & h_{x} h_{y} \\
h_{x} h_{y} & 1-h_{x}^{2}
\end{array}\right] .
$$

Hence, the Jacobian matrix of the transformation from spherical space to slope space is obtained as

$$
J_{\circ \rightarrow \|}=J_{\perp \rightarrow \|} J_{\circ \rightarrow \perp}=-\frac{1}{h_{z}^{2} \sqrt{1-h_{z}^{2}}}\left[\begin{array}{cc}
h_{x} & -h_{y} h_{z} \tag{7}\\
h_{y} & h_{x} h_{z}
\end{array}\right]
$$

References

[Hei14] Eric Heitz. Understanding the masking-shadowing function in microfacet-based BRDFs. Journal of Computer Graphics Techniques (JCGT), 3(2):48-107, 2014.
[Smi67] B. G. Smith. Geometrical shadowing of a random rough surface. IEEE Trans. Antennas and Propagation, 15(5):668-671, 1967.

