Improved Geometric Specular Antialiasing
(Supplemental Document)

Yusuke Tokuyoshi
SQUARE ENIX CO., LTD.
tokuyosh@square-enix.com

Anton S. Kaplanyan
Facebook Reality Labs
kaplanyan@fb.com

1 Non-Axis-Aligned Anisotropic BRDF

Shadowing-masking Function. The Smith masking function [Smi67] is defined as
\[G_1(i, h) = \frac{\chi^+(i \cdot h)}{1 + \Lambda(i)} \]
where \(\chi^+(i \cdot h) \) is the Heaviside function: 1 if \(i \cdot h > 0 \) otherwise 0. \(\Lambda(i) \) is a function which depends on the NDF model. The height-correlated masking-shadowing function [Hei14] is given as
\[G_2(i, o) = \frac{\chi^+(i \cdot h) \chi^+(o \cdot h)}{1 + \Lambda(i) + \Lambda(o)}. \]

In this paper, \(\Lambda(o) \) for the anisotropic GGX NDF model is described in the later paragraphs.

Axis-aligned Anisotropic GGX BRDF The axis-aligned anisotropic GGX NDF is defined as follows:
\[D(h) = \frac{\chi^+(h_z)}{\pi^{\alpha_x \alpha_y} (\frac{h_x^2}{\alpha_x^2} + \frac{h_y^2}{\alpha_y^2} + h_z^2)^{\frac{3}{2}}}. \]

For this NDF, the masking-shadowing function is obtained using the following function:
\[\Lambda(o) = -0.5 + \sqrt{\frac{\alpha_x^2 o_x^2 + \alpha_y^2 o_y^2 + o_z^2}{2|o_z|}}, \]
where \([o_x, o_y, o_z] \) is the outgoing direction \(o \) in tangent space.

Non-axis-aligned Anisotropic GGX BRDF For shading antialiasing, we use the \(2 \times 2 \) roughness matrix \(A \) instead of \(\alpha_x \) and \(\alpha_y \). The anisotropic NDF can be generalized using this matrix [Hei14] as follows:
\[D(h) = \frac{\chi^+(h_z)}{\pi \sqrt{\det(A)} (\langle [h_z, h_y] A^{-1} [h_z, h_y]^T, h_z^2 \rangle)^{\frac{3}{2}}}. \]
For this NDF, the masking-shadowing function is obtained using the following function:

$$\Lambda(o) = -0.5 + \sqrt{\langle o_x, o_y \rangle A [o_x, o_y]^T + o_z^2} / |o_z|.$$

For this microsurface model, the slope of a microsurface is stretched in the directions of the eigenvectors of the roughness matrix A. The stretching scale for each eigenvector is the reciprocal square root of the eigenvalue of A.

Practical Implementation. The determinant $\det(A)$ can produce a large precision error due to floating point arithmetic, especially when using an elongated kernel for NDF filtering. To improve the numerical stability, this paper clamps $\det(A)$ by a small value τ for NDF:

$$D(h) = \frac{\chi^+(h_z)}{\pi \sqrt{\max(\det(A), \tau)}} (\langle h_x, h_y \rangle A^{-1} [h_x, h_y]^T + h_z^2)^2.$$

To compute A^{-1}, we also use this clamped determinant as follows:

$$A^{-1} = \frac{\text{adj}(A)}{\max(\det(A), \tau)}.$$

For NDF filtering, since $\sqrt{\det(A)}$ must be equal or greater than the original squared roughness parameter, we use $\tau = \alpha_x^2 \alpha_y^2$.

2 Derivation of the Jacobian Matrix

Let ψ_x be an angle on the great circle passing through the halfvector h and normal n, and ψ_y be an angle on the great circle passing through the halfvector h and $\frac{h \times n}{\|n \times h\|}$: then its Cartesian coordinate is given as

$$m_x = \cos \psi_y \sin \psi_x,$$
$$m_y = \sin \psi_y,$$
$$m_z = \cos \psi_y \cos \psi_x.$$

(1)

Thus, the Jacobian matrix of the transformation from $[\psi_x, \psi_y]$ to $[m_x, m_y]$ at $\psi_x = 0$ and $\psi_y = 0$ is yielded as

$$J_{\psi \rightarrow m} = \begin{bmatrix} \frac{\partial m_x}{\partial \psi_x} & \frac{\partial m_x}{\partial \psi_y} \\ \frac{\partial m_y}{\partial \psi_x} & \frac{\partial m_y}{\partial \psi_y} \end{bmatrix} = \begin{bmatrix} \cos \psi_y \cos \psi_x & -\sin \psi_y \sin \psi_x \\ 0 & \cos \psi_y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. $$

(2)
The tangent-space halfvector can be represented using a polar coordinate system \([\theta, \phi]\). Using this \(\theta\) and this \(\phi\), the rotation from the local-space halfvector to tangent-space halfvector is given by

\[
\begin{bmatrix}
h_x \\
h_y \\
h_z
\end{bmatrix} =
\begin{bmatrix}
\cos \theta \cos \phi & -\sin \phi & \sin \theta \cos \phi \\
\cos \theta \sin \phi & \cos \phi & \sin \theta \sin \phi \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix},
\]

where \([m_x, m_y, m_z] = [0, 0, 1]\) (i.e., \(\psi_x = 0\) and \(\psi_y = 0\)). Therefore, the Jacobian matrix of the orthographic projection is derived as

\[
J_{o \rightarrow \perp} = J_{\perp \rightarrow \perp} J_{o \rightarrow \perp} = \begin{bmatrix}
\frac{\partial h_x}{\partial m_x} & \frac{\partial h_x}{\partial m_y} \\
\frac{\partial h_y}{\partial m_x} & \frac{\partial h_y}{\partial m_y}
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
= \begin{bmatrix}
\cos \theta \cos \phi & -\sin \phi \\
\cos \theta \sin \phi & \cos \phi
\end{bmatrix}
= \frac{1}{\sqrt{1 - h_z^2}} \begin{bmatrix}
h_x h_z \\
h_y h_z
\end{bmatrix}.
\]

The slope of the halfvector is given as

\[
\begin{bmatrix}
h \parallel_x \\
h \parallel_y
\end{bmatrix} = \begin{bmatrix}
\frac{h_x}{\sqrt{1 - h_x^2 - h_y^2}} - \frac{h_y}{\sqrt{1 - h_x^2 - h_y^2}}
\end{bmatrix}.
\]

Therefore, the Jacobian matrix of the transformation from the projected unit disk to slope space is yielded as follows:

\[
J_{\perp \rightarrow \parallel} = \begin{bmatrix}
\frac{\partial h_{\parallel_x}}{\partial h_x} & \frac{\partial h_{\parallel_x}}{\partial h_y} \\
\frac{\partial h_{\parallel_y}}{\partial h_x} & \frac{\partial h_{\parallel_y}}{\partial h_y}
\end{bmatrix}
= \frac{1}{h_z^3} \begin{bmatrix}
1 - h_y^2 & h_x h_y \\
1 - h_x^2 & -h_x h_y
\end{bmatrix}.
\]

Hence, the Jacobian matrix of the transformation from spherical space to slope space is obtained as

\[
J_{o \rightarrow \parallel} = J_{\perp \rightarrow \parallel} J_{o \rightarrow \perp} = \frac{1}{h_z^2 \sqrt{1 - h_z^2}} \begin{bmatrix}
h_x \\
h_y \\
h_x h_z
\end{bmatrix}.
\]

References
