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RMSE: 13124.2845
(a) Non-axis-aligned filtering,

Kaplanyan et al. [2016]

RMSE: 0.2188
(b) Our non-axis-aligned

filtering

RMSE: 0.3016
(c) Axis-aligned filtering,

Kaplanyan et al. [2016]

RMSE: 0.3000
(d) Our axis-aligned filtering (e) Reference, 1024 spp

Figure 1: Improvements in geometric specular antialiasing for the GGXNDFwith roughness α = 0.01 on the SanMiguel scene.

Note the removed rims and more accurate specular highlights in our methods.

ABSTRACT

Shading filtering proposed by Kaplanyan et al. [2016] is a simple

solution for specular aliasing. It filters a distribution of microfacet

normals in the domain of microfacet slopes by estimating the filter-

ing kernel using derivatives of a halfway vector between incident

and outdoing directions. However, for real-time rendering, this

approach can produce noticeable artifacts because of an estima-

tion error of derivatives. For forward rendering, this estimation

error is increased significantly at grazing angles and near edges.

The present work improves the quality of the original technique,

while decreasing the complexity of the code at the same time. To

reduce the error, we introduce a more efficient kernel bandwidth

that takes the angle of the halfvector into account. In addition, we

optimize the calculation of an isotropic filter kernel used for de-

ferred rendering by applying the proposed kernel bandwidth. As

our implementation is simpler than the original method, it is easier

to integrate in time-sensitive applications, such as game engines,

while at the same time improving the filtering quality.
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1 INTRODUCTION

Rendering images in presence of both highly specular materials

and complex geometry is a challenging task. A high quality image

requires finding all tiny speckles induced by geometric shapes as

well as elongated anisotropic highlights that can often have areas

much smaller than the footprint of a pixel. In addition, presence of

high-frequency shading surfaces, such as normal maps, bump maps,

or displacement maps amplifies this problem further. Moreover, as

the roughness of the material is decreased, these highlights increase

their intensity, while their area decreases. This makes them not

only harder to find with pointwise samples used in rendering, but

also less forgiving to miss due to their high contribution. These

challenges make such effects very challenging to render in a tempo-

rally stable manner from one frame to another even with hundreds

of samples spent per pixel.

https://doi.org/10.1145/3306131.3317026
https://doi.org/10.1145/3306131.3317026
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In real-time setting, rendering small specular highlights becomes

evenmore challenging, because of a typical budget of only one shad-

ing sample per pixel. If, in addition, a pixel’s area covers a larger

solid angle, such as in VR head-mounted displays, the relative area

of the highlight with respect to the pixel footprint gets even smaller,

reducing the chances of finding the highlight with a single shad-

ing sample. Such high-intensity speckles can appear once in many

frames, when one of the samples occasionally lands inside the high-

light. Temporal accumulation and supersampling techniques, such

as temporal antialiasing [Karis 2014], usually completely remove

such outlier highlights, changing the material appearance.

In order to alleviate this problem,multiple prefiltering techniques

have been introduced. They typically work by analyzing the local

proximity around the shading point and filtering the highlight in

the area with respect to the footprint covered by the shaded pixel,

respecting variations of the surface and shading parameters. One

such recent technique is geometric specular antialiasing (SAA) that

employs the filtering of a microfacet normals distribution function

(NDF) [Kaplanyan et al. 2016]. This method is practically used in

multiple game engines (e.g., Amazon Lumberyard [Chen 2017] and

Unity 2018.2+ [2018]) and shipped games. While providing high

quality filtering for smooth specular materials and varying geome-

try, the method also introduces instabilities and artifacts at grazing

angles, especially when estimated using GPU quad derivatives. This

work improves the quality of the original geometric SAA method,

while simultaneously decreasing the complexity of the code.

Our contributions are as follows:

• This work analyzes the increasing derivatives estimation

error at grazing angles for geometric SAA (§3.1).

• To alleviate the above problem, we modify the kernel band-

width by taking the angle of a halfvector into account for

forward rendering (§3.2).

• We also present a simple roughness calculation for deferred

rendering based on the proposed kernel bandwidth (§4).

We also demonstrate the improvements in a comparison with

the previous work.

2 BACKGROUND

2.1 Previous Work

Modern modeling of physically-based bidirectional reflectance dis-

tribution functions (BRDFs) uses a microfacet theory as the most

common framework. In this model, light scattering during reflec-

tion off a rough surface is modeled using a distribution of micro-

scopic specular facets, also called microfacets. The light scattering

profile is then affected by the distribution of normals of such micro-

facets, called a normals distribution function (NDF). This microfacet

BRDF model was introduced by Torrance [1967] and Cook [1982].

Heitz [2014] provides a recent survey on the microfacet theory.

Two common microfacet BRDFs used in renderers and game

engines are the Beckmann distribution [1963] and the GGX distri-

bution [Walter et al. 2007] (a.k.a., Trowbridge-Reitz [1975]). The

Beckmann NDF models microfacet slopes as a bivariate Gaussian

distribution of their tangents, also called slopes. The GGX NDF

models the distribution of slopes induced by an ellipsoid and is

typically characterized by a heavier tail of its specular highlights,

providing a closer match for real-world measured materials [Burley

2012; Walter et al. 2007].

For bump mapping, normal mapping, and displacement map-

ping, multiple filtering solutions were developed. Fournier [1992]

introduced a combination of bump maps, shading surfaces, and

surface BRDFs. Westin et al. [1992] studied filtering using complex

multiscale materials. Becker et al. [1993] first proposed a seamless

multiscale transition method between bump maps, displacement

maps, and BRDF shading. They employed a multiscale hierarchy

of BRDFs at different frequency levels. Kautz and Seidel [2000] fil-

tered existing BRDF models using a shift-variant BRDF model and

a non-linear basis. Toksvig [2005] introduced a real-time method

for filtering normal maps by refitting a Gaussian NDF. Advanced

normal map filtering methods includes a frequency-domain normal

map filtering [Han et al. 2007] which uses multiple von Mises-

Fisher modes to fit a multiscale complex representation of a high-

resolution normal map into a mipmap pyramid that can be filtered

in real-time. LEAN mapping [Olano and Baker 2010] stores the

distribution of shading normals induced by high-resolution nor-

mal maps using a method of moments, where linearly filterable

moments are stored in mip chains of textures. This approach was

also extended to multiscale filtering of displacement maps [Dupuy

et al. 2013].

There was a little work on efficient real-timemethods for geomet-

ric specular antialiasing (SAA). The original work on SAA [Ama-

natides 1992] bandlimits the Phong BRDF by adjusting its exponent

according to the pixel sampling frequency. Hill [2012] employed

the Toksvig filter [2005] along with the derivative estimation of

normals. Vlachos [2015] clamped the roughness with an empir-

ical threshold using normal derivatives. Although these normal

derivative-based approaches suppress specular aliasing, they in-

duce the change of material appearance. Kaplanyan et al. [2016]

builds on Amanatides [1992]’s method by projecting an estimation

of the on-surface pixel footprint into the domain of microfacet

slopes, where microfacet NDFs are defined. While this method pro-

vided a simple real-time implementation, it could suffer from an

estimation error of the pixel footprint. To suppress this estima-

tion error, Kaplanyan et al. [2016] also proposed an overfiltering

approach using a biased axis-aligned filter kernel. Our solution

improves on the recent progress in geometric SAA [Kaplanyan et al.

2016] by analyzing and reducing the main error of the method as

well as proposing a more real-time friendly method.

2.2 Geometric Specular Antialiasing

The microfacet BRDF model is defined as

f (i, o) =
F (i · h)G2(i, o)D(h)

4|i · n| |o · n|
,

where i and o are incoming and outgoing directions, h = i+o
∥i+o∥

is the halfvector, n is the shading normal, G2(i, o) is the masking-

shadowing function, F (i·h) is the Fresnel factor, andD(h) is the NDF.
See Table 1 for notation. For geometric SAA, initially the Beckmann

NDF is assumed and then it is filtered using an anisotropic Gaussian

kernel in the slope domain. The filter kernel is given as a covariance
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Table 1: Notation used throughout the paper.

Symbol Description

i Unit vector of incident direction

o Unit vector of outgoing direction

n Unit vector of shading normal at the surface point

h Unit halfway vector between i and o
[hx , hy , hz ] Unit halfway vector in tangent space

D(h) Normals distribution function (NDF)

Σ 2×2 covariance matrix to represent the filter kernel

∆h∥
u , ∆h∥

v Derivatives of the halfvector in slope space

∆h⊥
u , ∆h⊥

v Derivatives of the halfvector in the hx -hy space

λmin, λmax Minimum and maximum eigenvalues of Σ

matrix Σ calculated for each pixel as follows:

Σ = σ 2

[
∆h∥

u

∆h∥
v

]
T
[
∆h∥

u

∆h∥
v

]
,

where σ = 0.5 is the standard deviation of the pixel filter kernel in

image space measured in pixels, and ∆h∥
u and ∆h∥

v are the deriva-

tives of the halfvector in slope space with respect to image space

axial pixel offsets. The filtering process is a convolution of the esti-

mated kernel with the NDF of the material. Since the Beckmann

NDF is a 2D Gaussian distribution in slope space, this filtering be-

comes a convolution of two Gaussian distributions, which has a

simple closed-form solution. Hence, the resulting filtered NDF is

also an anisotropic Beckmann NDF that uses the following 2×2

matrix as its roughness parameter:

A =
[
α2

x 0

0 α2

y

]
+ 2Σ,

where αx and αy are the original Beckmann roughness parameters

along the tangent and bitangent axes. In this paper, we refer to

the above matrix as a roughness matrix, which is two times the

covariance matrix by definition of the Beckmann NDF. It was also

shown that this roughness matrix can be used to approximate the

filtering of the GGX NDF. Please see the original work [Kaplanyan

et al. 2016] for more details. Although microfacet BRDFs are usually

used with axis-aligned anisotropy, these BRDFs are straightforward

to generalize for handling a full roughness matrix for non-axis-

aligned anisotropy [Heitz 2014]. For details on the generalized GGX

microfacet BRDF, please refer to the supplemental document.

3 ERROR REDUCTION FOR SPECULAR

ANTIALIASING

3.1 Error Analysis for Derivative Estimation

Grazing View Directions. For real-time computer graphics APIs

(e.g., DirectX
®
and OpenGL

®
), derivatives can be estimated in a

pixel shader using intrinsic functions (e.g., ddx/ddy in HLSL). These

intrinsics compute the difference between values of two adjacent

pixels in a 2×2 shading quad. However, this rough estimation pro-

duces a numerical error (Fig. 1a) especially for grazing angles of

the view direction o. To suppress artifacts caused by this error, Ka-

planyan et al. [2016] used a biased axis-aligned rectangular filtering

technique. They also clamped the bandwidth of their rectangular

n
h estimation error of derivatives (ϵ◦x , ϵ

◦
y )

error in slope space (ϵ ∥x , ϵ
∥
y )

Figure 2: Estimation error of derivatives of the halfvector

h is increased in slope space for grazing h. This error can

become larger than themagnitude of the slope of h, and thus
inappropriate filtering is performed.

kernel. However, artifacts can still be noticeable for grazing angles

as shown in Fig. 1c.

Grazing Halfvectors. In this paper, we show that the above esti-

mation error is significantly increased by projecting the halfvector

h into slope space. This increase of the error is represented using

the Jacobian matrix of the projection as follows:[
ϵ
∥
x

ϵ
∥
y

]
= J◦→∥

[
ϵ◦x
ϵ◦y

]
,

where ϵ
∥
x and ϵ

∥
y are the errors in slope space. ϵ◦x is the error on

the great circle passing through the halfvector h and normal n. ϵ◦y
is the error on the great circle passing through the halfvector h
and

n×h
∥n×h∥ . The Jacobian matrix J◦→∥ of the transformation from

spherical space to slope space is given by

J◦→∥ = −
1

h2

z

√
1 − h2

z

[
hx −hyhz
hy hxhz

]
,

where [hx ,hy ,hz ] is the halfvector h in tangent space (please refer

to the supplemental document for derivation). The determinant of

this Jacobian matrix is

det

(
J◦→∥

)
=

1

h3

z
≥ 1.

The magnitude of the error in slope space can be larger than the

magnitude of the slope of the halfvector for small values of hz .
Hence, significant artifacts are induced for grazing halfvectors due

to inappropriate filtering. These artifacts are noticeable especially

for the GGX NDF, because the GGX distribution has a heavier tail

than the Beckmann distribution. In addition, since this error can

produce an inordinately elongated kernel, a noticeable precision er-

ror is produced later, when evaluating the filtered non-axis-aligned

BRDF (please see the supplemental document).

3.2 Proposed Error Reduction

As was shown using Jacobian analysis, artifacts appear when the

halfvector approaches grazing angles. However, NDF filtering of a

smooth specular material is usually unnecessary for these grazing

halfvectors because they do not produce highlights (Fig. 3). For

rough materials, filtering can be disabled all together, since it does

not have an effect. Therefore, we reduce the error at grazing an-

gles by using a narrower kernel bandwidth. To shrink the kernel

bandwidth for grazing angles efficiently, this paper estimates the

derivatives in a projected halfvector space instead of slope space
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n h h

NDF

low-frequency kernel

high-frequency kernel

Figure 3: Since a grazing halfvector angle is unlikely to

produce specular highlights (i.e., noticeable aliasing), we

employ a higher-frequency filter kernel for a shallower

halfvector angle.

(Fig. 4). This is done by the orthographic projection onto the hx -hy
plane. Let ∆h⊥u and ∆h⊥v be the derivatives of [hx ,hy ] (please see
Kaplanyan et al. [2014] for details). Then our filter kernel is given

by the following covariance matrix:

Σ = σ 2

[
∆h⊥u
∆h⊥v

]
T
[
∆h⊥u
∆h⊥v

]
.

As shown in Listing 1, this orthographic projection is simpler than

the projection into slope space. The Jacobian matrix of this projec-

tion is given by

J◦→⊥ =
1√

1 − h2

z

[
hxhz −hy
hyhz hx

]
.

The determinant of this Jacobian matrix is

det (J◦→⊥) = hz ≤ 1.

Therefore, this projection reduces the error for grazing halfvectors.

Fig. 1b and Fig. 1d show the rendering results using our kernel

bandwidth. Our method significantly reduces artifacts without in-

creasing the complexity of the shader code.

4 OPTIMIZATION FOR DEFERRED

RENDERING

4.1 NDF Filtering for Deferred Rendering

For deferred rendering, the use of halfvectors is not practical, be-

cause the inexpensive derivative estimation is usable only in the

pixel shader. In addition, light sources are unknown for the G-buffer

rendering pass.We also employ the approximation used for deferred

rendering from Kaplanyan et al. [2016]. This approximation uses an

average normal n̄ within the shading quad instead of the halfvector

h for derivative estimation by assuming the worst case for a distant

light source and distant eye position as follows:

Σ = σ 2

[
∆n̄⊥u
∆n̄⊥v

]
T
[
∆n̄⊥u
∆n̄⊥v

]
,

where ∆n̄⊥u and ∆n̄⊥v are derivatives on the average normal n̄ on

the projected unit disk. For a compact G-buffer, since a single scalar

roughness parameter is often required, Kaplanyan et al. [2016]

proposed to use the maximum roughness of their rectangular filter

∆h∥

(a) Previous derivatives

∆h⊥

(b) Our derivatives

Figure 4: While the original method (a) estimates the deriva-

tives in slope space, ourmethod (b) estimates the derivatives

on the projected unit disk to reduce the filter bandwidth.

Listing 1: Our derivative estimation for forward render-

ing (HLSL). The red code is removed from Kaplanyan et

al. [2016]’s implementation.

float3 halfvector = normalize(viewDirection + lightDirection );
float3 halfvectorTS = mul(tangentFrame , halfvector );
float2 halfvector2D = halfvectorTS.xy / abs(halfvectorTS.z);
float2 deltaU = ddx(halfvector2D), deltaV = ddy(halfvector2D );

kernel. In this section, we discuss alternative options for the case

of a single scalar roughness. Using kernel bandwidth from Sect. 3.2,

we explore simple isotropic filter kernels.

The computation cost of NDF filtering is typically not a bot-

tleneck when rendering a G-buffer that is dominated by a large

memory transfer cost. However, the NDF filtering technique for

deferred rendering can also be desirable to use for forward render-

ing in practical game engines [Unity 2018]. The reason is that the

computation cost of normal-based filtering is independent from the

number of light sources, and it supports any real-time approxima-

tion techniques for various types of light sources (e.g., area lights

and environment maps) as well as indirect illumination. Therefore,

simplification of NDF filtering is not only beneficial to reduce the

implementation cost, but also to improve the performance for in

these practical applications.

4.2 Constraint for Conservative Isotropic

Filtering

In order to completely remove specular aliasing, the bandwidth of

the isotropic kernel must be conservatively wider than that of the

tight anisotropic kernel (represented by the covariance matrix Σ).
Kaplanyan et al. [2016] used the maximum roughness of a circum-

scribed rectangle to satisfy this constraint. On the other hand, this

conservative kernel bandwidth should be as tight as possible to

reduce overfiltering. Within this constraint and objective, the opti-

mal kernel bandwidth can be obtained as the maximum eigenvalue

of the covariance matrix Σ. Let λmax be the maximum eigenvalue.

In this case, the squared roughness of the filtered isotropic NDF is

given by

ᾱ2 = α2 +min (2λmax,κ) , (1)

where α is the original roughness parameter for the isotropic NDF,

and κ = 0.18 is the clamping threshold used in the Kaplanyan et
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θuθu
n nu

n̄u
2 sinθu

(a) Average of two normals

⇒

n

n̄u

nu
n̄u

(b) Tangent

space

⇒ θuθu

2 sinθu

(c) Derivative in tangent

space

Figure 5: If the average normal n̄u is computed using two

normals n and nu of contiguous pixels (a), the length of the

estimated derivative of the average normals in tangent space

(c) is equal to the distance between n and nu (i.e., length of

the derivative of world-space normals).

Kaplanyan et al. [2016] Ours (Eq. 4) Difference

0

0.2

Figure 6: Visualization of roughness parameter ᾱ of the fil-

tered isotropic NDF for deferred rendering.

al. [2016]’s original axis-aligned filtering to suppress the estima-

tion error of derivatives. Although this eigenvalue λmax can be

calculated analytically, it is more expensive than the rectangular

kernel-based approach. Therefore, we propose another option that

satisfies the above constraint.

4.3 Simple Conservative Filtering

Instead of the maximum eigenvalue λmax, we can employ the sum

of the minimum and maximum eigenvalues λmin + λmax for con-

servative isotropic filtering. This sum is inexpensively obtained by

the trace of Σ as follows:

λmax ≤ λmin + λmax = tr (Σ) = σ 2

(∆n̄⊥u
2

+
∆n̄⊥v

2

)
. (2)

4.4 Optimization for Norms of Derivatives

Kaplanyan et al. [2016] computed the average normal n̄ using the

average within the shading quad, in this paper we employ the

average of two contiguous pixels for each screen axis as follows:

n̄u =
n + nu
∥n + nu ∥

, n̄v =
n + nv
∥n + nv ∥

,

where nu and nv are normals at the neighboring pixels for each

screen axis. For this case, n̄u is on the great circle defined by n and

nu , and the angle between n and n̄u is equal to the angle between

nu and n̄u . As shown in Fig. 5, let this angle be θu , then the norm

of the derivative of n̄⊥u is given by∆n̄⊥u
 = 2 sinθu = ∥n − nu ∥.

Listing 2: Our roughness calculation using conservative fil-

ter for deferred rendering (HLSL). The red code is removed

for less conservative filtering.

float3 dndu = ddx(normal), dndv = ddy(normal );
float variance = SIGMA2 * (dot(dndu , dndu) + dot(dndv , dndv ));
float kernelRoughness2 = min(2.0 * variance , KAPPA);
float filteredRoughness2 = saturate(roughness2 + kernelRoughness2 );

Listing 3: Previous roughness calculation using the width of

the rectangular kernel for deferred rendering (HLSL).

float2 neighboringDir = 0.5 - 2.0 * frac(pixelPosition * 0.5);
float3 deltaNormalX = ddx_fine(normal) * neighboringDir.x;
float3 deltaNormalY = ddy_fine(normal) * neighboringDir.y;
float3 avgNormal = normal + deltaNormalX + deltaNormalY;
float3 avgNormalTS = mul(tangentFrame , avgNormal );
float2 avgNormal2D = avgNormalTS.xy / abs(avgNormalTS.z);
float2 deltaU = ddx(avgNormal2D), deltaV = ddy(avgNormal2D );
float2 boundingRectangle = abs(deltaU) + abs(deltaV );
float maxWidth = max(boundingRectangle.x, boundingRectangle.y);
float variance = SIGMA2 * maxWidth * maxWidth;
float kernelRoughness2 = min (2.0 * variance , KAPPA);
float filteredRoughness2 = saturate(roughness2 + kernelRoughness2 );

The same relation is yielded for n, nv , and n̄v . Since n − nu and

n − nv are equivalent to the derivatives of world-space normals

∆nu and ∆nv , we derive∆n̄⊥u
 = ∥∆nu ∥,

∆n̄⊥v
 = ∥∆nv ∥. (3)

4.5 Optimized Conservative Filtering

By substituting Eq. 3 to Eq. 2, we obtain the following equation:

λmin + λmax = σ 2

(
∥∆nu ∥2 + ∥∆nv ∥2

)
.

Hence, our roughness for the filtered isotropic NDF is yielded as

ᾱ2 = α2 +min

(
2σ 2

(
∥∆nu ∥2 + ∥∆nv ∥2

)
,κ
)
. (4)

Since this calculation uses world-space normals, the computation of

the average normal and transformation into tangent space are un-

necessary. Our implementation (Listing 2) is simpler than comput-

ing the rectangular kernel-based maximum roughness (Listing 3).

In addition, since this roughness calculation is independent from

tangent vectors, it performs robustly even if objects do not have

valid tangent vectors. The visualization of the filtered roughness

parameter is shown Fig. 6. For deferred rendering, there are no

large differences between our method and Kaplanyan et al. [2016],

while the proposed implementation is simpler.

4.6 Less Conservative Filtering

While conservative isotropic filtering removes specular aliasing, it

induces overfiltering instead. Therefore, a smaller kernel than the

conservative filtering might be more practical, though underfilter-

ing can occur. We found the average of eigenvalues can be used to

balance underfiltering and overfiltering as follows:

ᾱ2 = α2 +min

(
2

(
λmin + λmax

2

)
,κ

)
= α2 +min

(
σ 2

(
∥∆nu ∥2 + ∥∆nv ∥2

)
,κ
)
. (5)
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Table 2: Computation time of forward shading at 8K resolution (ms).

Non-axis-aligned filtering Axis-aligned filtering Normal-based isotropic filtering

w/o SAA Previous Ours Previous Ours Previous Max (Eq. 1) Sum (Eq. 4) Avg (Eq. 5)

Sponza 1.80 2.34 2.31 2.35 2.30 2.35 2.40 1.90 1.88

Bistro 2.06 2.60 2.57 2.61 2.56 2.58 2.62 2.16 2.17

San Miguel 3.65 4.16 4.12 4.15 4.12 4.16 4.19 3.74 3.74

Sponza

262 k triangles

Bistro

814 k triangles

San Miguel

5.3 M triangles

Figure 7: Reference images in our experiments (1024 spp).

5 RESULTS

Here we present the results of NDF filtering for the GGXmicrofacet

BRDF. Similar results can be obtained for the Beckmann NDF, but

we decided to focus on the GGX NDF as the most challenging case.

All images are rendered at 1920×1080 pixels on an AMD Radeon™

RX Vega 56 GPU. The image quality is evaluated with the root-

mean-squared error (RMSE) metric. In our experiments, reference

images shown in Fig. 7 are rendered using 1024 samples/pixel (spp).

The RMSE for each scene using 1 spp is 1.1045 (Sponza), 1.0881

(Bistro), and 1.0663 (San Miguel), respectively.

Forward Rendering. Listing 1 shows the necessary code changes

and Fig. 8 demonstrates the improvements for forward rendering.

Our method reduces the error for non-axis-aligned filtering sig-

nificantly. In this experiment, our non-axis-aligned filtering is the

highest quality in terms of the RMSE metric, while some pixels can

still flicker in animation (please see the supplemental video). For

such dynamic scenes, biased axis-aligned filtering is more practical

because of the temporal stability. Even for this axis-aligned filtering,

our method avoids undesirable artifacts on grazing angles.

Deferred Rendering. In addition to the improvements of forward

rendering, we propose a simplification of isotropic NDF filtering

for deferred rendering. Our algorithm is shown in Listing 2, while

the previous algorithm is provided in Listing 3. The quality com-

parison of these methods is shown in Fig. 9. NDF filtering using the

maximum eigenvalue (Eq. 1) has the smallest error in the constraint

of conservative filtering in theory. The proposed conservative fil-

tering (Eq. 4) produces slightly smaller error than the previous

method, while our implementation is much simpler than the pre-

vious method and the above optimal approach. These techniques

are conservative to avoid underfiltering, but they induce overfil-

tering instead. Our less conservative filtering (Eq. 5) reduces the

error by balancing overfiltering and underfiltering. While less con-

servative filtering can produce temporal aliasing artifacts slightly

more than conservative filtering, it alleviates the change of material

appearance caused by overfiltering (please see the supplemental

video).

Performance. Table 2 shows the computation time for forward

shading at 8K resolution. As described in Sect. 4.1, since normal-

based isotropic NDF filtering for deferred rendering can also be

used for forward rendering, this paper also evaluates the normal-

based filtering for forward rendering. For non-axis-aligned and

axis-aligned filtering, the computation time of our method is al-

most the same as or slightly smaller than the previous method,

because our derivative estimation is simpler than the previous

method. For normal-based isotropic NDF filtering, conservative

filtering using the maximum eigenvalue is slightly more expensive

than the previous method. On the other hand, our simple filtering

techniques using the sum of eigenvalues and average of eigenvalues

are faster than the previous method, while they produce less error.

The performance improvement of our simplification is effective

when shaders are ALU bound.

6 LIMITATIONS

Our method is built upon Kaplanyan et al. [2016]’s work and inher-

its the usual limitations of this previous work. The method heavily

relies on high quality shading normals and addresses only the alias-

ing caused by specular highlights. Aliasing caused by geometric

discontinuities cannot be handled by the method. Real-time ap-

proximation of a pixel footprint introduces bias. The filtering of

the GGX NDF is approximated by assuming the Beckmann NDF,

therefore, GGX highlights can be overblurred due to this approxi-

mation. Unlike the previous method, the proposed kernel produces

underfiltering for grazing halfvectors. However, it is usually not a

problem because aliasing is small for grazing halfvectors.

7 CONCLUSIONS

In this paper we have presented an error reduction technique for

NDF filtering. The rough derivative estimation produces a signif-

icant numerical error, since the error is increased due to the pro-

jection into slope space. To suppress this increase of the error, this

paper employs a higher-frequency filter kernel for a shallower

halfvector angle. This is implemented by estimating derivatives of a

projected halfvector instead of a slope space halfvector. In addition,

we presented an optimized isotropic NDF filtering techniques for

deferred and forward rendering based on this derivative estimation.

Our method reduces the error as well as simplifies the shader code

for geometric SAA.
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