Point Cloud Culling

for Imperfect Shadow Maps SIGGRAPH

ASIA 2014
SHENZHEN

Yusuke Tokuyoshi
Square Enix Co., Ltd.

SA2014.SIGGRAPH.ORG SPONSORED BY 9 [4

SIGGRAPH

Virtual Point Lights Based Gl eiewr ASIA 2014

SHENZHEN

Many lights to approximate indirect illumination
» This talk focuses on shadow mapping for VPLs

VPL-based method:

|
&
'

:

Virtual Spherical Gaussian Lights for

Real-Time Glossy Indirect lllumination
Technical Briefs: Rendering
Sweet Osmanthus Hall, 06 Dec. 17:15-18:00 PM

SA2014.SIGGRAPH.ORG SPONSORED BY e [4
<

Virtual point lights are many light sources used for approximating indirect
illumination.

For interactive or real-time applications, a lot of VPL-based methods have been
developed.

We’ll also present a new technique entitled “Virtual Spherical Gaussian Lights for
Real-Time Glossy Indirect lllumination” in the Technical Brief session.

For the detail of this method, please come to the technical brief session.

In this course, we’d like to focus on shadow mapping for each VPL.
This shadow mapping can be a bottleneck for VPL-based real-time global illumination.

SIGGRAPH

|mperfeCt Shadow MapS (lSMS) [Ritschel08, 11] SRen N

» Often used for VPLs
: Uttt
» Single-pass method shistlidinge, :

ey Nz de eoa; “’3
-aanG S0 a’l-sn»a-e «$%g s
tgcacﬁs QQ. Qeﬁssxoe dostaisle

» Many low-resolution SMs :sgssfaifaiie. siniietissiaes
P Y

13 2exede

» Point-based rendering e R Ty

&y Pee
@
v
<
>
é
T3
..
»
(4
A
vl
&,
.
*
E3

priee
@
9.
-

1;&6.&&0; so
32232002
cﬁ ootw %008’1

A,
_oscuoa.' 1

100:646900
®
-
-
€
.

o
9.
-
>
*
o
-

P tad +3

]

- . $ Sl ¥

P2op28Er2STRETHI R FRLIOERES LSS

B I I i i T i i pe 1 1
2 >

sgonen Q‘QM- !0.;;». [5.l $’txl LSABY

642 resolution SM x 1024
(single render target)

SA2014.SIGGRAPH.ORG SPONSORED BY @ 2

Imperfect shadow maps are often used for VPLs.

This is a single-pass method to render an arbitrary number of shadow maps which
are tiled in a single render target.

This shadow mapping is done by point-based rendering.

]

SIGGRAPH

Point-Based Approximation SenuEn

» Scene geometry is represented by point cloud
» A point is projected onto only a single SM
» Splatting

» Generate & render a small quad / triangle splat centering on
the input point

- [

Point Generate a splat Project onto a SM

SA2014.SIGGRAPH.ORG SPONSORED BY é '

To generate imperfect shadow maps, the scene geometry is first approximated by a
point cloud.

Instead of polygons, we render this point cloud.

Similar to particle rendering, the points are rendered using splatting.

This is done by generating a small quad or triangle splat centered on each input point,
and then this splat is projected onto a single shadow map.

This splatting can be done with a single pass.

The computation time depends on the total number of points.

SIGGRAPH
ASIA 2014

Rendering Many Points PO shenzven

» 8-16K points for each SM
» 1024 VPLs need total 8-16M points
» Can be a bottleneck

SA2014.SIGGRAPH.ORG SPONSORED BY e [4

In order to generate imperfect shadow maps for many lights, we have to render
many points.

Generally, 8 to 16 K points should be used for each VPL.

For 1 K VPLs, this means a total of 8 to 16 M points.

Splatting these many points can be a bottleneck for global illumination rendering.

SIGGRAPH

Culling Invisible Points Senzren

» Front- or back-face culling
» Culling points under the surface of a VPL

SA2014.SIGGRAPH.ORG SPONSORED BY @ 2

Therefore, culling invisible points before the rendering is very effective.
In this figure, only green points are visible to a VPL.
Gray points are invisible.

All points are generated on surfaces, and each point can have a surface normal.
Thus, similar to conventional shadow mapping, we can use front- or back-face culling
for each point.

In addition, points under the surface of a VPL are also invisible.

These points should be culled before the splatting.

This culling can be implemented using a compute shader using an
AppendStructuredBuffer.

SIGGRAPH

Culling via DirectCompute Ar ALy

AppendStructuredBuffer< uint > pointldBuffer : register(u0);

[numthreads(WORKGROUP_SIZE, 1, 1)]
void CulllsmPointsCS(const uint id : SV_DispatchThreadID)
{

const float3 pos = GetPointPosition(id);

const float3 normal = GetPointNormal(id);

const uint vplindex = GetVplindex(id);

const float3 vplPos = GetVplPosition(vplindex);
const float3 vpINormal = GetVpINormal(vplindex);

/f front-face culling
if(dot(vpINormal, normal) > 0.0 && dot(vpINormal, pos - vplPos) > 0.0) {
pointldBuffer. Append(id);

}
}

SA2014.SIGGRAPH.ORG SPONSORED BY é (P

This is the compute shader.

As you can see from the code, it is quite simple.

Please note the red lines.

If a point is visible, it is appended into the pointldBuffer which is an
AppendStructuredBuffer.

By using this compute shader, points are culled in parallel on the GPU.

L. . SIGGRAPH
Draw Call for the Visible Points o e

» The visible points are rendered using
DrawlnstancedIndirect

Gets the hidden counter value of
pointldBuffer

opyStructureCoun

Done by a single thread CS
RWBuffer= uint = bufferForArgs : register(ud
B i

alculate the vertex count nombeoncal 1 10] OO

woid CalculatelnputArgsCS()

{
bufferForArgs[0]= pointCount] 0] * SFLAT_VERTEX_NUM;
H

Draw call using the vertex count
stored in GPU memory

SA2014.SIGGRAPH.ORG SPONSORED BY @ f

After the culling, only the visible points stored in the pointldBuffer are rendered.
This is done by DrawlnstancedIndrect for triangle splats.

In order to obtain the vertex count for the input argument of this draw call,
CopyStructureCount and a compute shader are used.

CopyStructureCount is used for getting the hidden counter value of the pointldBuffer
which is an AppendStructuredBuffer.

After that, the total vertex count of all the splats are calculated using a single thread
compute shader.

For triangle splats, this is calculated by multiplying the counter value by three.

Finally, DrawlInstancedIndirect is called using the input arguments stored in the
device memory.

SIGGRAPH

Experimental Results SenuEn
» VSGLS [mokuyoshita) and Adaptive ISMs (ritschelt]

Computation times of Adaptive ISMs (ms)

o uting | wincutin

Points Generation 4.21 4.21
Culling = 0.67

1024 VSGLs
Splatting 16.73 7.50 8K points for each SM

GPU: AMD Radeon™ HD 6990

SA2014.SIGGRAPH.ORG SPONSORED BY é ’

So, let me show you an experimental result of the point cloud culling.

In this experiment, 1 K virtual spherical Gaussian lights and adaptive imperfect
shadow maps are employed.

For each shadow map, we use 8 K points.

The computation time of adaptive points generation for this scene is about 4
milliseconds.

The point splatting time without culling is about 17 milliseconds.

On the other hand, the point splatting time with culling is 7.5 milliseconds.
The overhead of the culling is only 0.67 milliseconds.

So, the splatting pass can be twice as fast by using point cloud culling.

SIGGRAPH
Summary Ar ALy

Culling invisible points is very effective for ISMs

Culling on the GPU
AppendStructuredBuffer

Rendering only the visible points
CopyStructureCount
DrawlnstancedIndirect

SA2014.SIGGRAPH.ORG SPONSORED BY é '

To conclude, culling invisible points for imperfect shadow maps is very effective.
This culling can be performed on the GPU by using an AppendStructuredBuffer.
Then, we render only the visible points for imperfect shadow maps using
CopyStructureCount and DrawlInstancedIndirect.

10

SIGGRAPH
References AT

» RITSCHEL, T., EISEMANN, E., HA, I., KIM, J. D., AND SEIDEL, H.-P. 2011. Making imperfect
shadow maps view-adaptive: High-quality global illumination in large dynamic scenes. Comput.
Graph. Forum 30, 8, 2258-2269.

» RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHSBACHER, C., AND KAUTZ, J.
2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph.
27,5,129:1-129:8.

» TOKUYOQOSHI, Y. 2014. Virtual spherical gaussian lights for real-time glossy indirect illumination. In
SIGGRAPH ASIA "14 Technical Briefs 17:1-17:4.

SA2014.SIGGRAPH.ORG SPONSORED BY g [

11

