
Real-Time Bidirectional Path Tracing via Rasterization
Supplemental Material

Yusuke Tokuyoshi∗

Square Enix Co., Ltd.
Shinji Ogaki†

Square Enix Co., Ltd.

A Spatio-Temporal Interleaved Sampling

A.1 Spatial Interleaved Sampling

We employ interleaved sampling and geometry-aware filtering
[Segovia. et al. 2006] to accelerate computations similar to
[Ritschel et al. 2008]. This is done by evaluating a differing sample
subset for neighboring pixels. We then use a geometry-aware blur
to combine the illumination of neighboring pixels. Such an op-
eration is reasonable because indirect illumination is often of low
frequency.

A.2 Temporal Interleaved Sampling

Computing indirect illumination is still too slow to render a high
quality image in only one frame. Additionally, in interactive ap-
plications such as video games, response is often more important
than image quality. In order to increase frames per second and
maintain image quality, we exploit temporal coherence in super-
sampling (See for example [Knecht 2009; Herzog et al. 2010]). In
our system we use several indirect illumination caches correspond-
ing to each subpixel, and only one of them is rendered per frame in
a round-robin fashion. To improve indirect illumination quality, we
evaluate a differing sample subset for neighboring frames similar
to spatial interleaved sampling. To compute the final image of the
current frame, subpixels are reused from the cache of past frames.
This recycling is done by reverse reprojection caching [Nehab et al.
2007]. If the subpixel is detected in the cache, the cached indirect
illumination is reused. The reconstructed indirect illumination L of
the pixel s is given as:

L(s) =

∑l
i hi(s)L

c
i (γi(s))∑l

i hi(s)
, (1)

where l is the number of subpixels, Lci the cached indirect illumi-
nation corresponding to the ith subpixel, γi the warping function
of the pixel position by reverse reprojection, and hi(s) = 1 when
a cache hit is detected, otherwise hi(s) = 0. The cache hit is de-
tected using the difference between the reprojected depth zi and the
cached depth zci . The original reverse reprojection caching is given
by the following equation:

hi(s) =

{
1 if |zi(s)− zci (γi(s))| < ε,

0 otherwise
(2)

where ε is the user-specified acceptable range of a cache hit. How-
ever, this detection does not take into account the scale of objects
and distance. The appropriate ε depends on the distance between
the camera and an object. This is less accurate for dynamic scenes.
Furthermore, this binary detection may produce aliasing. To ad-
dress these problems, our cache hit detection is based on log-space
as shadow mapping [Wimmer et al. 2004] and Gaussian distribu-

∗e-mail: tokuyosh@square-enix.com
†e-mail: ogaki@square-enix.com

39.4 ms

(a) output image (b) cache hit ratio

Figure 1: The scene is composed of animated objects lit by an en-
vironment map (86942 triangles scene, 55 ray-bundles per frame).
(a) The output image. (b) The denominator of Equation (1) (Bright-
ness represents cache hit ratio). Cache miss occurs around the mov-
ing objects.

tion. The equation is given by:

hi(s) = exp

− log2
(

zi(s)
zci (γi(s))

)
2σ2

 , (3)

where σ2 is the user-specified variance that represents an acceptable
range. In this paper, we use 2σ2 = 0.0001 for all scenes.

This temporal supersampling is similar to amortized supersampling
[Yang et al. 2009], but our updating scheme is not amortization. For
amortized sampling, nonperiodic random sample points are used,
but this causes flickering if the number of samples per second is
insufficient. Hence, we use periodic quasi-random numbers, and
completely overwrite the cache in the updating process to avoid
flickering. We generate different random numbers in each subpixel
using a Quasi-Monte Carlo method in preprocessing. These gener-
ated constant numbers are scene-independent. Then, we calculate
indirect illumination using sample points based on these constant
numbers and update each cache in a round-robin fashion. If all the
caches hit, the identical and stratified sample points (i.e. all sample
points generated) are used in every frame, and we can completely
eliminate flickering. To put it the other way around, a cache miss
induces flickering around moving objects shown in Figure 1. How-
ever, it is less noticeable if motion blur is used.

B Implementation Details

B.1 Pipeline

Our system computes two-bounce indirect illumination from point
light sources and direct illumination from environment maps. To
execute bidirectional path tracing, we add the path tracing proce-
dure to our rendering pipeline. Figure 2 shows the pipeline of our
system.

Indirect illumination is computed by iterative multi-pass rendering
as instant radiosity. Therefore, the system first creates a G-buffer,
reflective shadow maps, and shadow maps of light sources. Cache
detection with reverse reprojection is executed simultaneously with
G-buffer rasterization. Moreover, we do not create only VPLs but
also global ray-bundles. Global ray-bundles are used to trace paths

diffuse

specular

. . .

(a) indirect illumination (b) texturing (c) reconstruction with cache (d) addition of direct illumination

Figure 3: Processing flow of the final image computation (173961 triangles scene, 21 VPLs and 21 ray-bundles per frame). (a) Indirect
illumination buffer is computed by bidirectional path tracing with spatial interleaved sampling and geometry-aware filter. (b) The indirect
illumination is textured with diffuse maps and specular maps. (c) Reconstruction with the past indirect illumination performs anti-aliasing
and error reduction. (d) The final image is obtained with direct illumination.

Figure 2: Rendering pipeline of our system. White blocks: proce-
dures. Blue blocks: memory resources. Gray allows: input-output
relationship. Vertex buffer or texture maps are omitted from this
figure to simplify. The procedures are executed in order from top to
bottom in each frame.

from a camera. Since we compute only one-bounce camera paths,
the screen-space bounding area of the ray-bundles only have to con-
tain all the visible points from a camera, similar to shadow map-
ping. We compute the bounding volume of the visible points by
the G-buffer, and limit the bounds of ray-bundles to reduce alias
artifacts.

Next, we compute indirect illumination in an iterative fashion. A
VPL and a ray-bundle are randomly generated, and their visibilities
are stored into the shadow map and buffer of the ray-bundle, respec-
tively. These visibility tests are done by GPU rasterization. Then,
bidirectional path tracing is done by using these visibilities. The
computational results of a diffuse and specular term are accumu-
lated into the “Indirect Illumination Buffer” by ping-pong buffer-
ing. These results are textured with diffuse maps and specular maps
in the post procedure “Output”.

The procedures “Split”, “Gather” and “Filter” perform spatial in-
terleaved sampling. The procedure “Output” computes texturing of
indirect illumination, reconstruction of indirect illumination with
“Cache Payload”, and direct illumination as shown in Figure 3. It
stores the pair of the current indirect illumination (Figure 3 (b)) and
the depth value to the “Indirect Illumination Cache”. This cache is
reused for proceeding frames using temporal coherence to improve
the image quality (Figure 3 (c)). Since direct illumination is tempo-

rally high frequency, we cache only indirect illumination. Finally,
the image with direct illumination added (Figure 3 (d)) is output to
the frame buffer.

B.2 Representation of Ray-bundles

Our global ray-bundles are represented by linked-lists [Yang et al.
2010]. This data structure is composed of a head pointer buffer and
a node buffer. The head pointer buffer contains the first node index
(32 bits UINT type) of the per pixel list. The node buffer has the
node data of the list. To represent fragment information, we use 20
bytes per node, as shown in the following structures.

struct FragmentData
{
float depth; // 31 bits depth and 1 bit face
uint normal; // polar coordinate (16 bits * 2)
uint albedo; // diffuse and specular (8 bits * 4)
uint glossiness; // glossiness and reserved(8 bits * 4)

};

struct Node
{
FragmentData data; // payload
uint next; // next node index

};

Our current system supports RGB diffuse maps, gray scale spec-
ular maps, and isotropic roughness. They are stored as 8 bits per
element. Three elements (24 bits) are reserved for future exten-
sions such as emissive material. Normal vectors are represented in
polar coordinates for compact representation. The face information
of a primitive obtained from SV IsFrontFace is stored in the sign bit
of the depth value. This face information is used to find a visible
front face fragment. Program 1 shows the HLSL code to find the
fragment from the node buffer. The input variable “first” is the first
node index of the list obtained from the head pointer buffer. The
tracing direction is represented by the variable “dir”. If the direc-
tion is forward, “dir” is 1, otherwise it is -1. The input variable
“depth” is the depth value of the starting point of a ray.

The resolution of the head pointer buffer is 256×256 pixels. We
allocate 20 M bytes for the node buffer.

B.3 VPL Shadow Maps

We create VPL shadow maps with paraboloid mapping [Brabec
et al. 2002]. Since paraboloid mapping is nonlinear, we tessel-
late polygons with the DirectX 11 tessellator. This approxima-
tion is faster than accurate cube mapping if the shadow maps are
low-resolution and screen-space level of detail is used, but slower
than imperfect shadow maps [Ritschel et al. 2008]. Currently,
we adopt a tessellation based approach, because imperfect shadow

74.1 ms 76.4 ms

(a) spatial interleaved sampling (b) spatio-temporal interleaved sampling (c) cache hit ratio

Figure 4: The comparison of (a) spatial interleaved sampling and (b) spatio-temporal interleaved sampling (173961 triangles scene, 21 VPLs
and 21 ray-bundles per frame). The image (c) shows the cache hit ratio obtained from denominator of Equation (1) (Brightness represents
cache hit ratio). The image quality of the cache hit area is improved by temporal interleaved sampling and reconstruction.

Program 1: Finding the visible front face fragment.

FragmentData f i n d F r a g m e n t (i n c o n s t u i n t f i r s t ,
i n c o n s t f l o a t d i r ,
i n c o n s t f l o a t d e p t h)

{
c o n s t f l o a t keyDepth = d i r ∗ d e p t h ;
u i n t i n d e x = f i r s t ;
FragmentData d a t a ;
d a t a . d e p t h = FLT MAX ;

w h i l e (i n d e x != HEAD POINTER NULL)
{

c o n s t Node node = n o d e B u f f e r [i n d e x] ;

i f (d i r ∗ node . d a t a . d e p t h > 0 . 0 &&
node . d a t a . d e p t h < d a t a . d e p t h &&
node . d a t a . d e p t h > keyDepth)

{
d a t a = node . d a t a ;

}

i n d e x = node . n e x t ;
}

d a t a . d e p t h = abs (d a t a . d e p t h) ;

r e t u r n d a t a ;
}

maps may produce holes in indirect shadow, and view-adaptive im-
perfect shadow maps [Ritschel et al. 2011] do not take into account
occlusion from camera paths.

The resolution of shadow maps for VPLs is 256×256 pixels. Since
reflective shadow maps and shadow maps of direct illumination
have to be accurate, we create them with cube mapping. We com-
pute reflective shadow maps with 256×256 resolution for each side.
For direct illumination of a point light source, we compute shadow
maps with 1024×1024 resolution for each side. The direct shadow
lookup is smoothed using a 16-tap percentage-closer filter.

C Results

Figure 4 shows the results of an animated scene rendered with
spatio-temporal interleaved sampling. Spatio-temporal interleaved
sampling and reconstruction with reverse reprojection improve im-
age quality in a cache hit area with small overhead. Therefore, we
can obtain sufficient quality with a small number of samples per
frame. However, this approach cannot reduce artifacts such as flick-

ering or aliasing in a cache missed area. Actually, a slight aliasing
artifact is visible in the area around the right hind leg of the horse
in Figure 4 (b).

D Limitations

Temporal interleaved sampling delays illumination appearance, es-
pecially for high-glossy surfaces. If BRDFs are low-frequency, the
delay is not distracting in the general case.

References

BRABEC, S., ANNEN, T., AND SEIDEL, H.-P. 2002. Shadow
mapping for hemispherical and omnidirectional light sources. In
Proc. of Computer Graphics International, 397–408.

HERZOG, R., EISEMANN, E., MYSZKOWSKI, K., AND SEIDEL,
H.-P. 2010. Spatio-temporal upsampling on the gpu. In Proc. of
I3D 2010, 91–98.

KNECHT, M. 2009. Real-Time Global Illumination using Temporal
Coherence. Master’s thesis, Vienna University.

NEHAB, D., SANDER, P. V., LAWRENCE, J., TATARCHUK, N.,
AND ISIDORO, J. R. 2007. Accelerating real-time shading with
reverse reprojection caching. In Proc. of Graphics Hardware
2007, 25–35.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P.,
DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow
maps for efficient computation of indirect illumination. ACM
Trans. Graph. 27, 129:1–129:8.

RITSCHEL, T., EISEMANN, E., HA, I., KIM, J. D., AND SEIDEL,
H.-P. 2011. Making imperfect shadow maps view-adaptive:
High-quality global illumination in large dynamic scenes. Com-
put. Graph. Forum 30, 2258–2269.

SEGOVIA, B., IEHL, J.-C., MITANCHEY, R., AND PÉROCHE, B.
2006. Non-interleaved deferred shading of interleaved sample
patterns. In Proc. of Graphics Hardware 2006, 53–60.

WIMMER, M., SCHERZER, D., AND PURGATHOFER, W. 2004.
Light space perspective shadow maps. In Proc. of EGSR 2004,
143–151.

YANG, L., NEHAB, D., SANDER, P. V., SITTHI-AMORN, P.,
LAWRENCE, J., AND HOPPE, H. 2009. Amortized supersam-
pling. ACM Trans. Graph. 28, 135:1–135:12.

YANG, J. C., HENSLEY, J., GRÜN, H., AND THIBIEROZ, N.
2010. Real-time concurrent linked list construction on the gpu.
Comput. Graph. Forum 29, 1297–1304.

