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Figure 1: Left: procedural sky and clouds. Center: time-of-day with local probes. Right: result in game.

Abstract

We present the core graphics technologies used to render and light
the world of Final Fantasy XV. The latest iteration of the franchise
displays a seamless environment more dynamic than ever before,
with special features such as dynamic weather, time of day, and
procedural sky and clouds. We first describe the hybrid global il-
lumination system based on both dynamic and static elements that
is used to handle reflection and bounced light from the different
light sources in the game, then move on to explain how the en-
gine procedurally renders sky and clouds and how these dynamic
components are intertwined with both the lighting pipeline and the
weather system. During the presentation, details on implementation
and optimization will be given.
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1 Game constraints and basic lighting

Final Fantasy XV has an extremely varied environment. The ren-
derer must not only be able to transition seamlessly from indoor
locations using a variety of local lights to wide outdoor fields af-
fected by sky lighting, but also be able to handle hybrid situations
such as moving train cars with both local lights and wide windows
to the outside. As the game makes use of dynamic time-of-day
and weather systems, we could not rely on static baked lighting or
standard light probe approaches. Since we are working on a wide
open-world game, we also had strong requirements on data storage.
We therefore decided upon a hybrid global illumination strategy
based on both dynamic and static elements in order to strike the
best balance for the requirements of the game.
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2 Ambient lighting and probe system

2.1 Diffuse light probes

Ambient diffuse lighting is handled with local light probes. Am-
bient diffuse lighting from the sky is computed using Precomputed
Radiance Transfer (PRT) [Sloan et al. 2002]. The PRT transfer ma-
trices are calculated by our in-house path tracer. A layering system
is used to blend between the probe grids, which are organized into
nested hierarchies. The grids can either be placed manually, as is
often done in interior levels, or can be automatically placed to fit
the game’s navigation meshes or height maps. For ambient diffuse
lighting from static local lights that are not affected by time-of-day,
we use Irradiance Volumes. Lighting data in Irradiance Volumes
is stored alongside PRT information as spherical harmonics. Sun
indirect diffuse can be expressed using Light Propagation Volumes
(Note: at this point, for performance reasons, LPV has been dis-
abled on console builds) and a custom screen-space ambient oc-
clusion algorithm created in collaboration with the LABS group at
Eidos [Michels et al. 2015]. Screen-space reflection is done with
a classic ray march at half resolution combined with a roughness-
based bilateral blur and upsample [Wronski 2014].

Table 1: Summary of the lighting components.

Local lights Sun sky

Specular GGX GGX
Pre-filtered cube map

/ layered reflection
Direct
diffuse

Lambert Lambert PRT

Indirect
diffuse

Irradiance volumes LPV/SSAO PRT

Shadows
Dynamic and static

shadow maps
CSM / heightmap

ray marching
PRT

2.1.1 Moving environments

Among Final Fantasy XV’s many varied environments types are
those that take place in large vehicles such as trains and airships.
When the player is inside such environments they otherwise behave
like other indoor environments. The difference is that the environ-
ment itself can move and rotate relative to the outside, causing local
lighting changes depending on the relative orientation of the win-
dows to the sky. In order to support cases such as these, probes

http://dx.doi.org/10.1145/2897839.2927398


are optionally baked with a local environment rather than the entire
scene, and the SH data is rotated dynamically at run time based on
the environment’s local orientation.

2.2 Specular light probes

While PRT provides an elegant means of supporting dynamic time-
of-day for diffuse lighting, specular lighting is more challenging.
The now standard technique of choice for handling specular re-
flections is a tiered system of screen space reflection, local cube
maps with parallax correction, and global cubemaps [Karis 2013].
The problem with this, as it relates to our game’s requirements,
is that those cube maps must be baked offline and are therefore
static. In order to extend this to support dynamic time-of-day, we
developed a new technique for storing varying probe data. Unlike
techniques which re-evaluate the probes at run time, or which store
a mini g-buffer for each cube map and relight them at run time
[McAuley 2015], our technique is very fast to evaluate. The mem-
ory footprint is also extremely modest compared to fully static cube
map approaches. The basis for this method is a novel compression
scheme which represents a color-varying cube map (based on time
of day, weather, and other factors) by decomposing the final result
into a high-frequency component, represented in cube maps, and
a time-varying low-frequency component represented in spherical
harmonics.

3 Procedural sky and clouds

Final Fantasy XV requires dramatic changes in atmosphere. To
give total control to the designers and allow for smooth transitions,
we decided to generate the whole sky (including upper atmosphere,
sun, stars, moon, and clouds) procedurally.

3.1 Atmospheric scattering

The standard models for simulating atmospheric light scattering in
games have many limitations, such as no twilight and lack of in-
tuitive artistic control. In order to overcome these limitations we
turned to a precomputed approach. Though this has been done be-
fore [Bruneton and Neyret 2008], we found that existing approaches
did not match our reference photographs well enough. Our ap-
proach uses LUTs generated by a least squares fit to sky and in-
scatter simulation results computed offline. We use a separate in-
scatter LUT which allows artists to control the mid-ground color,
and a tweaked Mie phase function in order to handle sun occlu-
sion behind distant objects without having to evaluate the occlusion
function via a shadow map or other costly methods. In overcast
conditions we switch to an entirely different model based on [ISO
2004].

3.2 Cloud rendering

The clouds are modeled using a combination of several octaves of
noise functions. The shapes are generated by ray marching. For the
direct lighting component we do a ray march between the known
heights of the cloud layer and use an extinction transmission map
for the occlusion term [Gautron et al. 2011]. For the ambient light-
ing term we analytically calculate it as an integral over a half-
hemisphere of constant color. A compression scheme is used to
store the lit HDR clouds in 8-bit textures. Rendering of the pro-
cedural sky on screen is done in 3 steps: atmospheric scattering,
clouds, and celestial objects and stars. In order to fit within our
GPU budget, we amortize the rendering cost across several frames.
After the sky box texture is updated, a similar lazy update process
is used to perform BRDF filtering for the global specular cube map.

Clouds also contribute to the main sun shadow map which lights the
remainder of the scene.

Given the slow amortized cloud rendering, care must be taken to
avoid artifacts when the clouds are animating. We will describe
our cloud animation system, which uses reprojection and temporal
blending of in-progress cloud updates in order to give the illusion
of smoothly animating cloud shapes.

4 Weather effects

Coupled with the above systems which handle the updates of the
sky itself is a robust GPU particle engine for handling rain, snow,
fog, and other weather-based effects. In addition, weather changes
impact the shading of the rest of the scene, such as causing wet-
ness on surfaces [Lagarde 2012], generating ponds and ripples, and
otherwise affecting the lighting balance and post-processing mood.
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