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Appendix A: Gaussian Based Weighting Function

This section proves that the Gaussian based weighting func-
tion (given by Eq. (2) in the paper) is the special case of
our distribution-aware weighting function. In addition, the
roles of two user-specified parameters are explained. When
ai(x) ∝ g

(
x−xi,τ

2
i

)
for x ∈ Rm and Ω = Rm, we can use

b
(
x′,x

)
∝ g
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)
where υ

2 is the user-specified pa-

rameter. For this case, the smoothed distribution ci(x) is also
a Gaussian function as follows:
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where τ̄
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2. Thus, the normalized distribution func-
tion is given by
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Therefore, the similarity is derived as
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and thus the weighting function is given by

w(i, j) = qβ
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The term 2τ̄i τ̄ j

τ̄2
i +τ̄2

j
detects the difference of τ̄i and τ̄ j (i.e. dif-

ference of τi and τ j). If τi = τ j, our weighting function is
equivalent to the Gaussian based weighting function as fol-
lows:

w(i, j) = g
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τ
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2υ
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)
.

This variance parameter is the linear transformation of input-
dependent variance τ

2
i using user-specified parameters υ

2

and β. In order to control the kernel bandwidth using this

linear transformation, these two parameters are introduced
in this paper.

Appendix B: SG Approximation for Parametric BRDFs

Parametric BRDFs are fitted with a single SG by using
Wang’s on-the-fly analytical approximation [WRG∗09]. A
BRDF is separated into two factors: the NDF Di(hi), and
the rest of the factors Mi(ψi,ω) as follows:

ρ(yi,ψi,ω) = Mi(ψi,ω)Di(hi),

where hi is the half-way vector of ψi and ω. Bell-shaped
NDFs are approximated with an SG. For example, the Phong
distribution is approximated as

Di(hi) =
ni +1

2π
(ni ·hi)

ni ≈ µ′iG
(
hi,ni,λ

′
i
)
,

where ni is the Phong exponent, λ
′
i = ni and µ′i =

ni+1
2π

for
this model. Other bell-shaped parametric NDFs (e.g. Beck-
mann distribution) are also approximated with an SG an-
alytically. Using spherical warping, the specular BRDF is
approximated as

ρ(yi,ψi,ω) = Mi(ψi,ω)µ
′
iG(ω,ξi,λi) ,

where ξi = 2(ni ·ψi)ni−ψi, and λi =
λ
′
i

4(ni·ψi)
. Finally, we

obtain the following SG approximation:

ρi(ω)max(ni ·ω,0)≈ µiG(ω,ξi,λi) ,

where µi =
Mi(ψi,ξi)µ

′
i max(ni·ξi,0)
Ri

. To compute this approxi-
mation, the view direction ψi, surface normal ni, reflectance
Ri, and BRDF parameters (e.g. ni) are necessary. For de-
ferred shading pipelines, ni, Ri and BRDF parameters are
given by the G-buffer. The view direction ψi is computed
with the camera position and the position yi which can be
given by the position buffer in the G-buffer. Instead of the
position buffer, yi can be calculated using the camera pro-
jection matrix and the depth buffer for memory reduction.
Therefore, the parametric specular lobe at each pixel is inex-
pensively approximated with an SG on-the-fly for real-time
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applications with dynamic scenes. ASGs are also usable in
the same manner [XSD∗13].

Appendix C: Product Integrals of SGs

Spherical Gaussians. The product integral of two SGs is
derived in [TS06] as∫

S2
G(ω,ξ1,λ1)G(ω,ξ2,λ2)dω =

4πsinh(r)
exp(λ1 +λ2)r

,

where r = ‖λ1ξ1 +λ2ξ2‖. Since this is not closed in SG ba-
sis, Iwasaki et al. [IDN12] introduced the following approx-
imation:

∫
S2

G(ω,ξ1,λ1)G(ω,ξ2,λ2)dω≈
2πG

(
ξ1,ξ2,

λ1λ2
λ1+λ2

)
λ1 +λ2

.

(C.1)
This approximation error is small if λ1 or λ2 are large.

Anisotropic spherical Gaussians. The approximate prod-
uct integral of an ASG and SG is closed in ASG basis as
follows: ∫

S2
Ǵ(ω,ξx,ξy,ξz,λx,λy)G(ω,ξ,λ)dω

≈
2πǴ
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The approximate integral of an ASG is given by∫
S2

Ǵ
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where λx ≥ λy, t = λx − λy, and F(t) =∫ 2π

0 exp
(
−t cos2

φ

)
dφ which is approximately obtained

with a precomputed 1D texture or an analytical rational
approximation. This paper employs the analytical approx-
imation. ASG definition can be equivalently written in
algebraic form:

Ǵ(ω,A) = max
(
ω ·ξz,0

)
exp
(
−ω

T Aω

)
,

where A is a 3×3 symmetric matrix, and ξz is its eigenvec-
tor with the smallest eigenvalue. If ASG lobes are not low
frequency, the product of two ASGs is approximated with
an ASG as the following equation:

Ǵ(ω,A1)Ǵ(ω,A2)≈C(ξz,3,ξz,1,ξz,2)Ǵ(ω,A3),

where A3 = A1 +A2, ξz,3 is the eigenvector with the small-
est eigenvalue of A3, and C(ξz,3,ξz,1,ξz,2) = max(ξz,3 ·
ξz,1,0)max(ξz,3 · ξz,2,0). Thus, the product integral of two

exact
SG approx.

Figure D.1: Diffuse lobe similarity for κ =∞.
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Figure D.2: Filtering diffuse indirect illumination. Our
diffuse lobe-aware filtering is equivalent to the normal-
aware filtering. The variance parameter is given as σ

2
n =

0.05404477 when β = 20 and κ = 100.

ASGs is approximately obtained as follows:∫
S2

Ǵ(ω,A1)Ǵ(ω,A2)dω
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where λ
′
x,λ
′
y,λ
′
z are eigenvalues of A3, and λ

′
x ≥ λ

′
y ≥ λ

′
z.

Appendix D: Diffuse Lobe Similarity

This section reformulates the normal-aware weighting func-
tion based on the diffuse lobe similarity. For Lambertian sur-
faces, the diffuse lobe is given as ai(ω)∝max(ni ·ω,0). As
described in Eq. (9) in the paper, the smoothing kernel is an
SG with lobe sharpness κ. If κ =∞, ci(ω) = ai(ω) is ob-
tained. Thus the similarity of two diffuse lobes is given by

qi, j =
3

2π

∫
S2

max(ni ·ω,0)max(n j ·ω,0)dω

=
sinφi, j +(π−φi, j)cosφi, j

π
,

where φi, j = arccos(ni · n j). As shown in Fig. D.1, this
diffuse lobe similarity is bell-shaped and analogous to an
SG as: qi, j ≈ G

(
ni,n j,λc

)
, where the lobe sharpness λc =

0.9426 is obtained by using the least squares method (the in-
tegrated squared fitting error: 0.00245). Using Eq. (C.1), this
paper extends the above similarity for arbitrary κ as follows:

qi, j ≈ G
(

ni,n j,
λcκ

2λc +κ

)
.

Therefore, an SG can be used for the weighting function as

wω(i, j) = qβ

i, j ≈ G
(

ni,n j,
1

σ2
n

)
= wn(i, j).
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where σ
2
n = 2λc+κ

βλcκ
. Hence, the normal-aware weighting

function is the special case of our lobe-aware weighting
function for diffuse surfaces. This reformulation provides
unified parameters κ and β between diffuse and specular
surfaces, and reduces material-dependent parameter tuning.
Fig. D.2 shows the spatio-temporal filtering using β = 20
and κ = 100 for diffuse surfaces.

Appendix E: Code Optimization

Our approximated lobe-aware weighting function (i.e. Eq.
(12) in the paper) can be rewritten as follows:

wω(i, j) ≈

2
√

λ̄iλ̄ j

λ̄i + λ̄ j

β

G

(
ξi,ξ j,

βλ̄iλ̄ j

λ̄i + λ̄ j

)

= exp
(

β

2
log

4u
v2 +

βu
v
((ξi ·ξ j)−1)

)
,

where u = λ̄iλ̄ j and v = λ̄i + λ̄ j. This is used in our im-
plementation for code optimization, because it has only an
additional mathematical function (i.e. log) compared to the
conventional normal-aware weighting function. In addition,
exp and log functions can be compiled using faster intrinsics.

References
[IDN12] IWASAKI K., DOBASHI Y., NISHITA T.: Interactive bi-

scale editing of highly glossy materials. ACM Trans. Graph. 31,
6 (2012), 144:1–144:7. 2

[TS06] TSAI Y.-T., SHIH Z.-C.: All-frequency precomputed ra-
diance transfer using spherical radial basis functions and clus-
tered tensor approximation. ACM Trans. Graph. 25, 3 (2006),
967–976. 2

[WRG∗09] WANG J., REN P., GONG M., SNYDER J., GUO
B.: All-frequency rendering of dynamic, spatially-varying re-
flectance. ACM Trans. Graph. 28, 5 (2009), 133:1–133:10. 1

[XSD∗13] XU K., SUN W.-L., DONG Z., ZHAO D.-Y., WU R.-
D., HU S.-M.: Anisotropic spherical gaussians. ACM Trans.
Graph. 32, 6 (2013), 209:1–209:11. 2

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.


