
Journal of Computer Graphics Techniques Vol. 5, No. 1, 2016 http://jcgt.org

Stochastic Light Culling

Yusuke Tokuyoshi
Square Enix Co., Ltd.

Takahiro Harada
Advanced Micro Devices, Inc.

ClampingClamping
(RMSE: 0.0377)(RMSE: 0.0377)

StochasticStochastic
(RMSE: 0.0026)(RMSE: 0.0026) 7.0 ms7.0 ms

ClampingClamping
(RMSE: 0.0240)(RMSE: 0.0240)

StochasticStochastic
(RMSE: 0.0028)(RMSE: 0.0028) 7.2 ms7.2 ms

Figure 1. Equal time comparison between tiled lighting with clamping light ranges (red) and
our stochastic tiled lighting (green) for 65,536 VPLs without shadow maps (264K triangles
scene, 1920×1152 resolution, GPU: AMD Radeon

TM
R9 290X). Clamping-based approach

produces darkening bias, while our method does not. (The scene is courtesy of F. Meinl, R.
W. Sumner, and J. Popovic.)

Abstract

Light culling techniques (e.g., tiled lighting) with clamping light ranges are often used in
real-time applications such as video games. However, they can produce noticeable image
darkening for many lights, because a bias is introduced as the part of the light emission farther
than the clamping range is always disregarded. To avoid such undesirable bias, the method
proposed in this paper uses a stochastic light culling method that randomly determines a light
range using Russian roulette. When this random range is calculated based on a user-specified
error bound, our method produces a sublinear cost for shading after the culling process due to
the unbiasedness. Our method changes the fall-off function of light stochastically. Since this
approach is independent from culling techniques, any existing light culling frameworks can be
used. In addition, our stochastic light culling is not only applicable to real-time rendering, but
also offline rendering using path tracing. For randomly distributed shading points produced
by a multi-bounce path tracer, we also introduces a bounding sphere tree-based light culling
algorithm and its GPU implementation. Using our method, we are able to render tens of
thousands of light sources with a smaller error than previous techniques for both real-time
and offline rendering.

35 ISSN 2331-7418

http://jcgt.org
http://www.crytek.com/cryengine/cryengine3/downloads
http://people.csail.mit.edu/sumner/research/deftransfer/data.html
http://people.csail.mit.edu/sumner/research/deftransfer/data.html

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

1. Introduction

For real-time or interactive rendering, light culling techniques such as splatting-based
approaches [Dachsbacher and Stamminger 2006; Nichols and Wyman 2010] and tiled
lighting [Olsson and Assarsson 2011; Harada et al. 2012; Olsson et al. 2012] have
been developed to handle many light sources. However, these techniques assume a
limited influence range of light, even though physically-based light sources (including
virtual point lights (VPLs) [Keller 1997]) have an infinite influence range. If this
range is clamped for light culling, noticeable bias and inconsistent estimation are
induced for many lights (Figure 1). Furthermore, although the number of light sources
to be evaluated per shading point is reduced by culling, it is still linear with respect to
the total number of light sources when using constant light ranges.

To avoid these problems, this paper proposes a stochastic light culling method
that randomly determines the influence range using Russian roulette [Arvo and Kirk
1990] for each light source. When this random range is calculated based on a user-
specified error bound, the number of lights to be evaluated per shading point is sublin-
ear with respect to the total number of lights unlike the clamping-based approaches.
Although the culling process before shading still has a linear cost similar to exist-
ing approaches, it has a negligibly small overhead compared to the shading process.
The proposed method is simple and easy to integrate into any existing real-time light
culling frameworks. In this paper, we demonstrate a stochastic tiled lighting technique
for VPL-based single-bounce global illumination as an example.

Even though our light culling method is unbiased, real-time rendering systems
can have other biases due to, for example, shadow mapping and other commonly em-
ployed real-time algorithms. Therefore, this paper introduces a light culling method
for path-tracing–based [Kajiya 1986] unbiased offline rendering. To apply stochas-
tic light culling to path tracing, this paper proposes a tree-based culling algorithm.
This algorithm performs efficiently for progressive rendering. We show that practical
scenes with tens of thousands of area lights can be rendered by using our method.
To implement this algorithm on the GPU, this paper also describes optimization tech-
niques.

The contributions of our paper are as follows:

• Unbiased light culling using a stochastic fall-off function is proposed (Sec-
tion 3). Using this method, the number of light sources to be evaluated per
shading point is sublinear with respect to the total number of lights for a user-
specified error bound.

• Tiled lighting using the proposed method is demonstrated (Section 4). By com-
bining with interleaved sampling, tens of thousands of VPLs can be rendered
at real-time frame rates on a commodity GPU.

36

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

• For the above mentioned VPL-based global illumination algorithm, this pa-
per also describes a simple acceleration technique for imperfect shadow maps
(ISMs) [Ritschel et al. 2008a] using a finite light range.

• A practical area light sampling method based on stochastic light culling is in-
troduced for progressive path tracing (Section 5).

2. Background

2.1. Related Work

Many-lights rendering. VPLs are often used for representing indirect illumination
[Keller 1997]. For real-time rendering, single-bounce VPLs lit from a point or direc-
tional light can be generated by using reflective shadow maps (RSMs) [Dachsbacher
and Stamminger 2005]. To generate shadow maps for many lights, Ritschel et al.
[2008a] proposed ISMs. They also proposed bidirectional reflective shadow mapping
(BRSM) and adaptive imperfect shadow maps (AISMs) to take view-dependent im-
portance into account [Ritschel et al. 2011]. For radiance evaluation of many lights,
sophisticated methods such as lightcuts [Walter et al. 2005] have been developed, but
they are focused on offline rendering. In order to roughly estimate the radiance at
real-time frame rates, interleaved sampling and geometry-aware filtering have often
been used [Segovia et al. 2006; Ritschel et al. 2011]. Although this approach can be
a consistent estimator, light sources are sampled uniformly. This uniform sampling
often produces a large variance or oversampling problem. To avoid these problems,
our stochastic light culling samples light sources according to their fall-off function.

Light culling. Dachsbacher and Stamminger [2006] rendered indirect illumination
by splatting bounding geometries of VPLs. Nichols and Wyman [2010] proposed an
adaptive multiresolution approach to reduce the fill rate of splatting. Tiled lighting
is a well-established light culling technique used in recent video games [Balestra and
Engstad 2008; Andersson 2011]. In this technique, lights are binned into 2D screen-
space tiles by limiting the influence range of light. This can accelerate shading, unless
a tile spans a large depth range. To improve the culling performance in the presence
of large depth ranges in a tile, clustered shading [Olsson et al. 2012] and 2.5D culling
[Harada 2012] were proposed.

However, the above light culling approaches assume limited light ranges. There-
fore, such light culling has not been used for accurate rendering. Our approach avoids
this problem by introducing a stochastic fall-off function.

Shadowing for light culling. In the lighting techniques mentioned above, shadow cal-
culation has also been investigated. Harada et al. [2013] demonstrated ray-traced
shadows in conjunction with a tiled forward-rendering method called Forward+

37

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

[Harada et al. 2012]. Olsson et al. [2014] developed virtual shadow maps using clus-
tered shading. The target application of virtual shadow maps is hundreds of light
sources, sparsely distributed in a scene, for direct illumination. For these lights, rela-
tively accurate hard shadows are usually employed. In contrast, our target application
is over thousands of virtual point lights (i.e., indirect illumination) that produce soft
indirect shadows. For this application, ISMs are often used [Ritschel et al. 2008a;
Ritschel et al. 2011]. However, existing ISMs do not take light ranges into account,
while virtual shadow maps do. Therefore, we introduce a light range-based culling
technique for ISMs in this paper.

2.2. Naı̈ve Radiance Evaluation

For a shading point, x, lit by point lights, the radiance, L(x, ω̂), viewed from the
direction ω̂ is given by

L(x, ω̂) =

N∑
i

Ii(−ω̂′i)f(‖xi − x‖)V (x,xi)ρ(x, ω̂, ω̂′i) max(ω̂′i · n̂, 0),

where N is the number of light sources, xi is the position of the ith light source,
ω̂′i = xi−x

‖xi−x‖ is the light direction, Ii(−ω̂′i) is the radiant intensity of the light source,
f(‖xi − x‖) is the fall-off function, V (x,xi) is the visibility between x and xi to
represent shadow, ρ(x, ω̂, ω̂′i) is the bidirectional reflectance distribution function
(BRDF), and n̂ is the surface normal at x. For physically-based lights, the fall-off
function is defined as

f(l) =
1

l2
,

where l = ‖xi − x‖. This function is monotonically decreasing, but always larger
than zero (i.e., it has an infinite influence range). Therefore, light culling techniques
cannot be directly applied for this fall-off function.

3. Stochastic Light Culling

3.1. Stochastic Fall-off Function

This section introduces a stochastic fall-off function for unbiased light culling. If
a light source is unimportant for a shading point, x, this light can be stochastically
rejected for shading. This is done by using a Russian roulette technique that randomly
samples f(l) by probability pi(l) ∈ [0, 1]. This probability represents the spatially-
varying importance, which is recommended to be proportional to f(l) for efficiency.
Therefore, this paper uses the following probability:

pi(l) = min

(
f(l)

αi
, 1

)
, (1)

38

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

1 point light 8 point lights 64 point lights

C
onventionalsam

pling
Per-lightrandom

num
ber

The scene is courtesy of G. M. Leal Llaguno

Figure 2. Artifacts of the fall-off function using Russian roulette. The same αi is used for
all images. Generating a random number ξi for each light source (bottom row), a finite light
range is obtained. For this implementation, variance is visible as banding artifacts.

where αi is a constant value to control variance. The fall-off function approximated
by Russian roulette is given by

f(l) ≈

{
f(l)
pi(l)

= max (αi, f(l)) , (pi(l) > ξi)

0, (otherwise)
, (2)

where ξi ∈ [0, 1) is the uniform random number.
A straightforward implementation draws a random number for each shading point.

However, the proposed method uses a single random number ξi for a light source, and
all the shading points will use the same value for a given light. The advantage of using
a single random number is that we can bound the influence range for each light which
allows us to cull lights in an unbiased fashion (Figure 2). Since pi(l) is monotonically
decreasing, the range ri is derived from pi(ri) = ξi as follows:

ri = f−1 (αiξi) =
1√
αiξi

. (3)

Hence, if ‖xi − x‖ ≥ ri, the light source can be culled before shading. This light
culling has a trade-off between the variance and computation time, which is controlled

39

http://jcgt.org
http://www.evvisual.com/

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

by αi. This occurs because a smaller range, which induces more aggressive culling,
can be produced by using larger αi.

3.2. Sublinear Shading Cost Using an Error Bound

In order to easily control variance, in this section we determine αi based on a user-
specified error bound. In addition, using this error-bound–based αi, the number of
VPLs to be evaluated per shading point is sublinear with respect to the total number of
VPLs, while the existing clamping approach has a linear shading cost (Appendix A).

The variance of the stochastic fall-off function is given by

(σi(l))
2 =

(
1

pi(l)
− 1

)
(f(l))2 . (4)

Thus, the imaged error for a single light source is represented as follows:

εi(x, ω̂) = σi(‖xi − x‖)EIi(−ω̂′i)V (x,xi)ρ(x, ω̂, ω̂′i) max(ω̂′i · n̂, 0), (5)

where E is the exposure scale parameter of the camera. The maximum values are
assumed for each term of Equation (5) in order to estimate the view-independent
error bound. From Equation (4), maxl(σi(l)) = αi

2 is obtained. The maximum
visibility is trivially equal to one. The maximum value of reflection lobes should also
be assumed, but it is often difficult in practice. Instead, for simplicity, BRDFs are
assumed to be the Lambert model as: ρ(x, ω̂, ω̂′i) = 1

π . Therefore, the reflection lobes
can be represented by the cut cosine whose maximum value is one. Thus, the error
bound is estimated by

εmax =
αiEmaxω̂′ (Ii(ω̂

′))

2π
.

In other words, αi is defined by using a user-specified error bound as follows:

αi =
2πεmax

Emaxω̂′ (Ii(ω̂′))
. (6)

If the exposure setting is adjusted in post-processing (i.e., auto-exposure), E is un-
available before shading. For such auto-exposure, the E of the previous frame can be
used.

For VPLs, the radiant intensity is inversely proportional to the number of lights,N .
Therefore, larger αi is used for larger N , and thus a smaller light range can be pro-
duced. Hence, using this error-bound–based αi, the number of VPLs to be evaluated
per shading point is sublinear with respect to the total number of VPLs.

One limitation of this error-bound calculation is that the directionality of radiant
intensity, Ii(ω̂′), is ignored to be able to utilize existing light culling frameworks for
point lights. Therefore, in this paper, we assumes low-frequency radiant intensity
(e.g., VPLs on diffuse surfaces).

40

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

4. Stochastic Tiled Lighting for Real-time Indirect Illumination

4.1. Stochastic Tiled Lighting

Stochastic light culling is easily integrated into any real-time lighting framework that
supports limited range lights. This section presents a sample implementation that
is applicable to existing tiled lighting methods, such as tiled deferred rendering, For-
ward+, and clustered shading. The details of these techniques can be found in publicly
available source codes [Persson and Olsson 2013; AMD 2014].

Algorithm 1 is a pseudocode of our stochastic tiled lighting. This algorithm con-
sists of three steps: (1) light range computation, (2) light culling, and (3) shading.
Our contributions are given in red. The light range computation (1) is a new step for
tiled lighting. This step randomly determines the influence range for each light source
on the GPU. Using these random ranges, light sources are culled by the light culling
step (2). This culling step is exactly the same as existing tiled lighting techniques. In
addition, the only modification of the shading step (3) is the fall-off function.

For stochastic light culling, the image quality for each frame is limited to the user-
specified error bound. The image quality can be further improved by using temporal
reprojection [Nehab et al. 2007] and a different random number sequence for every
frame. However, in this section we demonstrate that our light culling method can
produce visually acceptable results even without such temporal techniques.

Algorithm 1 Stochastic tiled lighting.
// 1. Light range computation
for all i in light sources in parallel do

Calculate αi using Equation (6)
Generate random number ξi
Calculate ri using Equation (3)

end for
// 2. Light culling
for all j in tiles in parallel do

Store overlapping light sources into jth light list
end for
// 3. Shading
for all x in shading points in parallel do

Get the light list of the shading point x
for all i in the light list do

Calculate the fall-off function using Equation (2)
Evaluate the radiance of ith light

end for
end for

41

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

4.2. Integration for VPL-based Indirect Illumination

We demonstrate VPL-based indirect illumination using BRSM and AISMs [Ritschel
et al. 2011] in conjunction with our stochastic tiled lighting. VPLs are sampled by us-
ing BRSM, and then an AISM is generated for each VPL to represent indirect shadow.
The original BRSM paper used interleaved sampling and geometry-aware filtering to
reduce the shading cost. Using our stochastic tiled lighting, shading can be acceler-
ated although it introduces some variance.

In Ritschel et al. [2008a]’s implementation, non-interleaved deferred shading of
interleaved sample patterns [Segovia et al. 2006] is used. Their technique first de-
interleaves pixels in a regular sampling pattern (e.g., 8×8 sampling pattern) into sub-
regions of the screen. For each region, shading is performed using a different subset
of VPLs. We propose to use our stochastic tiled lighting algorithm for each region.
Furthermore, using interleaved sampling helps reducing the memory requirements of
the lists of lights we store per tile, which is often allocated in local memory (e.g.,
local data share of AMD GPUs [AMD 2012]). Therefore, tens of thousands of light
sources can be handled without spilling the light lists to global memory. For example,
65,536 light sources can be rendered by using 8×8 interleaved sampling and a list of
1024 light indices.

4.3. Point Cloud Culling for Imperfect Shadow Maps

By limiting the influence range of lights, ISM rendering can also be accelerated simi-
lar to the VPL rendering described above. Although it also requires an overhead with
a linear cost similar to tiled lighting, it is negligibly small compared to naı̈ve ISM ren-
dering. ISM is done by approximating the scene geometry using a point cloud. These
points are rendered using splatting instead of polygons. This splatting pass can be
the main bottleneck for real-time or interactive applications. However, since there are
many points invisible to a light source (Figure 3), they can be culled before rendering

normal

VPL light range

Figure 3. Visible (green) and invisible (gray) shadow caster points to a VPL (front-face
culling). Invisible points can be culled for ISMs.

42

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

ISMs. For point splatting, front- or back-face culling can be used, similar to general
shadow mapping. Therefore, approximately half of the points can be invisible to light
sources. In addition, points under the surface of a VPL are also invisible. Tokuyoshi
[2014] demonstrated a simple implementation of point cloud culling based on such
visibility. Although this is efficient, the rendering time of ISMs is still linear. Our
method, additionally, takes into account the distance between a point and VPL for
the visibility, since the stochastic fall-off function has a finite influence-range. This
improvement enables a sublinear cost for the splatting pass after the culling process,
because points are more aggressively culled by increasing the number of VPLs, simi-
lar to light culling.

Implementation using DirectX R© 11. Program 1 is the compute shader of point cloud
culling. The system value id is the point index. This shader simply outputs only vis-
ible points using AppendStructuredBuffer. In order to splat these visible points onto
shadow maps, triangle-based vertex shader splatting [Wu 2012] using the
DrawInstancedIndirect API is used. Although this point cloud culling has a linear
complexity, the computation time per point is small compared to drawing a splat.
Thus, we can reduce the computational cost for a frame.

AppendStructuredBuffer< uint > pointIdBuffer : register(u0);

[numthreads(WORKGROUP_SIZE, 1, 1)]

void CullIsmPointsCS(const uint id : SV_DispatchThreadID)

{

const float3 pos = GetPointPosition(id);

const float3 normal = GetPointNormal(id);

const uint vplIndex = GetVplIndex(id);

const float3 vplPos = GetVplPosition(vplIndex);

const float3 vplNormal = GetVplNormal(vplIndex);

const float vplSquaredRange = GetVplSquaredRange(vplIndex);

const float3 relativePos = pos - vplPos;

if(dot(relativePos, normal) > 0.0 && // front-face culling

dot(relativePos, vplNormal) > 0.0 &&

dot(relativePos, relativePos) < vplSquaredRange) {

pointIdBuffer.Append(id);

}

}

Program 1. Culling invisible points for ISMs.

4.4. Experimental Results

We show the rendering results of the BRSM-based diffuse indirect illumination using
stochastic tiled lighting with εmax = 0.0005 performed on an AMD Radeon R9 290X.

43

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

To evaluate the scalability, lighting without AISMs is first shown, and then the ren-
dering cost of AISMs is discussed in the final paragraph. The frame buffer and RSM
resolution are 1920×1152 and 256×256, respectively. 8×8 interleaved sampling and
17×17 geometry-aware filtering are used to reduce the shading cost. The tile size is
16×16 pixels for tiled lighting. In this experiment, the frame buffer resolution is the
multiple of the product of the interleaved sampling size and tile size (i.e., 128×128),
for simplicity. The random number ξi is generated by using the tiny encryption al-
gorithm [Zafar et al. 2010]. A deferred-rendering–based implementation [Andersson
2011] is used for the tiled light culling and shading steps in Algorithm 1, since BRSM
and geometry-aware filtering use a G-buffer. In addition, 2.5D culling is employed
for the tiled light culling step to simply improve the performance.

Quality. Figure 4 shows the quality comparison using the root mean squared error
(RMSE) metric for a dynamic scene. The variance caused by interleaved sampling
is visible as high-frequency noise (left column). In addition, the clamping-based ap-
proach, Figure 4(a), produces noticeable image darkening (i.e., bias). On the other
hand, our stochastic tiled lighting (b) avoids such bias by introducing small vari-
ance. Although this variance is increased by interleaved sampling, it is reduced by
geometry-aware filtering for final images (right column). Hence, our approach, Fig-
ure 4(b), significantly reduces the RMSE for almost the same computation time as (a).
Even if a clamping error is quite small for each light source, it is not negligible for
many lights. This is because such darkening biases are accumulated unlike variance.
Our unbiased light culling avoids this accumulated error.

Figure 5 shows the comparison using different numbers of VPLs. For this scene,
since thousands of VPLs are insufficient to represent indirect illumination, undesir-
able flickering is produced (please refer to the supplemental video). To reduce this
flickering, a larger number of VPLs must be used. However, when tiled lighting with
clamping light ranges is used for acceleration, an error, where the image becomes
darker, increases in effect while increasing the number of VPLs. On the other hand,
by using our stochastic tiled lighting, flickering is efficiently reduced without the
darkening bias.

Performance scalability. Figure 6 shows the performance comparison between
clamping-based tiled lighting, (a), and our stochastic tiled lighting, (b), using the
same error bound. Although both (a) and (b) use the same culling process, which has
a linear cost, our method, (b), has a significantly smaller computation time. This is
because the number of lights to be evaluated after the culling process is sublinear for
our method unlike the clamping-based approach, and this shading process is the main
bottleneck. Our stochastic light ranges can be decreased using the user-specified error
bound as described in Section 3.2. The computation times of other passes are shown
in Table 6. For this scene, 65,536 VPLs can be handled in about 5 ms with a slight
error.

44

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

Indirect illumination before denoising Final image

(a)C
lam

ping

Interleaved sampling & tiled lighting:Interleaved sampling & tiled lighting:
2.87 ms2.87 ms

RMSE: 0.1136RMSE: 0.1136 RMSE: 0.0377RMSE: 0.0377

(b)S
tochastic

Interleaved sampling & tiled lighting:Interleaved sampling & tiled lighting:
2.87 ms2.87 ms

RMSE: 0.0584RMSE: 0.0584 RMSE: 0.0026RMSE: 0.0026

(c)w
/o

lightculling

Interleaved sampling: 44.4 msInterleaved sampling: 44.4 ms

RMSE: 0.0404RMSE: 0.0404 RMSE: 0.0017RMSE: 0.0017

(d)G
round

truth

Figure 4. Quality comparison of tiled lighting with clamping light ranges (a) and our stochas-
tic tiled lighting (b) for a dynamic scene (264K triangles, 65,536 VPLs without AISMs, total
rendering time: 7.0 ms). The image (c) is rendered without light culling. Left: indirect illu-
mination computed using interleaved sampling. Right: final rendering results with denoising,
texturing, and adding direct illumination. The clamping ranges are determined with reference
to the same computation time as stochastic tiled lighting.

45

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

256 VPLs (1.05 ms) 1024 VPLs (1.19 ms) 4096 VPLs (1.59 ms) 16384 VPLs (2.15 ms)

C
lam

ping

RMSE: 0.0079RMSE: 0.0079 RMSE: 0.0072RMSE: 0.0072 RMSE: 0.0320RMSE: 0.0320 RMSE: 0.0363RMSE: 0.0363

S
tochastic

RMSE: 0.0079RMSE: 0.0079 RMSE: 0.0054RMSE: 0.0054 RMSE: 0.0040RMSE: 0.0040 RMSE: 0.0026RMSE: 0.0026

Figure 5. Same frame as Figure 4 using different numbers of VPLs. Each computation
time is the combination of interleaved sampling and tiled lighting. The clamping ranges are
determined with reference to the same computation time as stochastic tiled lighting. For
a smaller number of VPLs, errors are visible as undesirable flickering (please refer to the
supplemental video). This flickering can be reduced by increasing VPLs, but the clamping-
based approach induces darkening to alleviate the computational burden. In contrast, our
stochastic approach does not produce such darkening.

ms

VPLs

(a) Clamping
(b) Stochastic

Rendered sceneRendered scene

Figure 6. Plots of the computation time of the combination of interleaved sampling and tiled
lighting. The blue line (a) is the tiled lighting with clamping light ranges, and the red line
(b) is our stochastic tiled lighting. The experimental scene (right image) is a different frame
of the scene of Figure 4. The clamping ranges are determined using the same error bound as
ours (Appendix A). Our approach has a smaller computation time than the clamping-based
approach by increasing the number of VPLs.

G-buffer 0.52
RSM 0.28
PDF of BRSM 2.63
VPL sampling & light range computation 0.05
Interleaved sampling & tiled lighting 3.98
Geometry-aware filtering 1.00

Table 1. Computation time for 65,536 VPLs of Figure 6 (ms).

46

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

ms

VPLs

Splatting

Point cloud update

(a) w/o point cloud culling

ms

VPLs

Splatting

Point cloud culling

Point cloud update

(b) with point cloud culling

Figure 7. AISM rendering time for the same scene as Figure 6.

AISM rendering. The AISM generation times with and without point cloud culling
are plotted in Figure 7. For each AISM, 8192 points and 32×32 resolution are used.
One-sixteenth of the point cloud is updated for each frame in a round-robin fash-
ion. Point cloud culling produces a sublinear cost for the splatting pass, Figure 7(b),
similar to light culling. Although this culling time is linear, it is negligibly small
compared to the splatting pass without culling, Figure 7(a). Thus, the total AISM
generation time is significantly reduced. Figure 8 shows the rendering result using
AISMs. Using stochastic tiled lighting and point cloud culling for ISMs, AISMs are
generated in about 22 ms for this scene. Thus, 16,384 VPLs with shadows can be
rendered at real-time frame rates.

Total rendering time: 31.46 msTotal rendering time: 31.46 ms

Point cloud update: 5.29 msPoint cloud update: 5.29 ms

Point cloud culling: 6.48 msPoint cloud culling: 6.48 ms

Splatting: 9.97 msSplatting: 9.97 ms

Interleaved sampling & tiled lighting: 5.56 msInterleaved sampling & tiled lighting: 5.56 ms

Figure 8. Rendered image using AISMs with point cloud culling (16,384 VPLs).

47

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

5. Area Light Sampling for Progressive Path Tracing

Rendering a scene with many lights is also challenging for path tracing. In this sec-
tion, we first describe additional techniques which are necessary to apply stochastic
light culling to path tracing and then present optimization techniques for a GPU im-
plementation.

5.1. Application to Area Lights

While real-time applications mostly use infinitesimal lights, such as point lights and
spot lights, area lights are used more often than infinitesimal lights in a global illumi-
nation renderer. The proposed stochastic light culling is applicable to an area light for
which the influence range ri is defined for each surface location, and the bounding
volume of it is approximated using the average emissive radiance of the area light.
Although it computes a loose bound of a light, this simplification reduces the cost of
the bound computation. Equation (6) to compute parameter αi is modified for an area
light as follows:

αi =
2πεmax

EL̄iAi
, (7)

where L̄i is the average emissive radiance, and Ai is the area of the light.

5.2. Culling via Bounding Sphere Tree

Since shading points of multi-bounce path tracing are distributed randomly, we cannot
use view frustum-based clustering techniques unlike VPL-based global illumination.
Therefore, we build a bounding sphere tree of lights that is used to find overlapping
lights for a shading point. The influence range ri is computed for all the lights at
once before light culling and sampling are executed. Then, for each shading point
generated by path tracing, overlapping lights are found by traversing the tree. Unlike
lightcuts, multiple importance sampling (MIS) [Veach and Guibas 1995] is suitable
for our method as we know the probability function pi(l) (Equation (1)).

Although this tree-based light culling works with any path tracing implementa-
tion, it is more suited for progressive path tracing than non-progressive path tracing.
This is because an aggressive culling can be used for progressive path tracing, which
allows greater error for each rendering pass, while we need to use a larger light range
to render an image with small error in non-progressive path tracing. In this section,
we assume area light sources are static, but their light ranges are determined using
different random numbers for every frame. In this case, the tree is built during a pre-
processing step, and then only the bounding volume of each node is updated in each
frame. Thus, the overhead of using a bounding sphere tree for culling in a progressive
path tracing is small.

48

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

Algorithm 2 Light sampling using stochastic light culling for a GPU path tracer.
// Light range computation
for all i in light sources in parallel do

Generate random number ξi and calculate ri using Equation (3)
end for
Update the bounding volume of each node of the tree
// Light culling and sampling
for all x in shading points in parallel do

lightList[] // List of overlapping light indices
cdf[] // CDF of PDF q(i) given by Equation (8)
// Light culling via bounding sphere tree
m← 0

node← root node of bounding sphere tree
while node is valid do

if node overlaps x and node is a leaf then
lightList[m++]← light index

end if
node← Traverse to the next node

end while
// CDF building
for all j in lightList do

if j == 0 then
cdf[j]← importance gj(x)

else
cdf[j]← cdf[j − 1] + importance gj(x)

end if
end for
Normalize cdf
// Light sampling
i← Sample a light source using binary search for cdf
// Light vertex sampling
xi ← Sample a vertex on the light i
if ‖xi − x‖ < ri then

Compute the sample density using Equation (10)
Evaluate the sample radiance

end if
end for

49

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

5.3. GPU Implementation

The proposed method is easily implemented in a CPU path tracer. However, a straight-
forward implementation of it on the GPU, executing a shading and visibility test when
a leaf node is found in the tree traversal, leads to an inefficient usage of the GPU
mainly because of branch divergence. The divergence gets worse as the computa-
tional cost of the visibility test and shading increases. In this section, we present
optimization techniques to implement stochastic light culling efficiently on the GPU.
A pseudocode using these optimization techniques is shown in Algorithm 2.

5.3.1. Decoupling the Tree Traversal and Shading

To reduce the branch divergence on the GPU, our approach decouples the tree traver-
sal and shading. This decoupling is effective especially for ray-tracing–based al-
gorithms compared to shadow-map–based approximation approaches [Ritschel et al.
2008b] because of the higher computational cost of the visibility test. This decou-
pling is done by using a light list similar to existing real-time light culling techniques.
Overlapping lights are first added into a light list in the tree traversal, and then these
lights are evaluated after the tree traversal. Unlike tiled lighting, which allocates a
light list per tile (i.e., cluster of shading points), a light list is necessary for each shad-
ing point in our approach. Therefore, this decoupling consumes more memory, but it
reduces the branch divergence.

To overcome this memory issue, we use reservoir sampling [Vitter 1985] to select
overlapping lights to be stored. The method makes it possible to select k overlapping
lights with a storage for k lights without enumerating all the overlapping lights. To
apply reservoir sampling to Algorithm 2, the red line needs to be changed to Algo-
rithm 3. When there are m overlapping lights for a shading point, where m is greater
than k, reservoir sampling chooses k lights at a probability of k/m. Therefore, the
use of this method increases the variance in this case.

Algorithm 3 Reservoir sampling.

if m < k then
lightList[m++]← light index

else
nRandomIndex← random() × (++m)
if nRandomIndex < k then

lightList[nRandomIndex]← light index
end if

end if

50

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

5.3.2. Restricting the Number of Shadow Rays

The technique described above restricts the number of overlapping lights per shading
point to k at most. If we compute direct illumination for all the lights found, the
number of shadow rays that need to be cast varies from 0 to k. It is preferable for the
GPU to process uniform computation; thus we restrict the number of shadow rays to
one at most by applying resampled importance sampling [Talbot et al. 2005]. This
method is general, so it is applicable to any path tracing implementation even without
stochastic light culling.

In the tree traversal, we collect the light list S which consists of k sampled lights
from all the overlapping lights for a shading point. We define the probability density
function (PDF) for resampling a light from the light list S as

q(i) =
gi(x)∑
j∈S gj(x)

, (8)

where gi(x) is an importance for resampling light i. The product of gi(x) and the
overlapping probability of the leaf is recommended to be approximately proportional
to the illumination integral for the light. For simplicity, we approximate the impor-
tance as

gi(x) = f(‖x−xi,c‖)L̄iAi max(−ω̂i,c · n̂i, 0) max(ω̂i,0 · n̂, ω̂i,1 · n̂, ω̂i,2 · n̂, 0), (9)

where ω̂i,0, ω̂i,1, ω̂i,2, and ωi,c are directions from x to three vertices and the center xi,c
of triangle light i, and n̂i is the geometric normal of light i. Although this importance
ignores BRDFs, the variance caused by high-frequency BRDFs can be reduced by
MIS for path tracing. To sample according to this PDF, we build the cumulative
distribution function (CDF) for the light list, and then a light is sampled using a binary
search for the CDF. Finally, a vertex on the sampled light source is sampled, and then
the radiance is evaluated using the following sample density:

pi(‖xi − x‖) min

(
k

m
, 1

)
q(i)si(xi), (10)

where xi is the sampled vertex, and si(xi) is the vertex sampling PDF on the light i
(e.g., si(xi) = 1

Ai
for area-based sampling).

Although importance, gi(x), could be used for the probability of reservoir sam-
pling in the tree traversal, we compute this importance after selecting k lights to min-
imize the divergence of code paths and bound the computational cost of the impor-
tance.

5.4. Experimental Results

First, we show the effectiveness of using stochastic light culling for area lights by
comparing rendered images using a CPU progressive path tracer. Note that none of

51

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

Rendered image Error

S
tochastic

lightculling

RMSE: 0.00019

U
niform

sam
pling

RMSE: 0.01563

Figure 9. Equal time comparison of stochastic light culling and uniform sampling in a CPU
path tracer. (54,720 triangle-lights scene, 640×480 resolution, 30 s).

the techniques presented in Section 5.3 are used in this test. We used εmax = 0.125

to calculate αi for each sample frame for all the experiments shown in this section.
Images in the left column of Figure 9 are each rendered in 30 seconds on dual Intel R©

Xeon R© E5-2670 v3 CPUs. There are 54,720 triangle lights in the scene. We can see
that the result rendered with stochastic light culling has far less noise and significant
reduction in RSME compared to the result rendered using uniform sampling.

Next, a GPU-based path tracer with stochastic light culling (Algorithm 2) is de-
veloped using OpenCL

TM
. All the following tests are performed by rendering images

at 1280×720 screen resolution on an AMD Radeon R9 290X GPU.
We rendered four scenes in which light sources are placed in a box with two light

bounces using light culling with clamping, stochastic light culling, and the brute-
force method to build the light sampling CDF (Figure 10). We used k = 32 for the
tests. Resampled importance sampling is used for all the images to restrict the number
of shadow rays. The light sampling algorithm using light culling with clamping is
almost the same as Algorithm 2, but it uses a constant range for ri, and pi(‖xi − x‖)
is removed from Equation (10). The brute-force method does not cull any lights, thus,

52

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

Clamping Stochastic Brute force

16
pointlights

64
pointlights

16
quad

lights
32

quad
lights

Figure 10. Comparison of rendered images using light culling with clamping, stochastic light
culling, and the brute-force method to build the light sampling CDF (100 samples/pixel).

it computes the importance (Equation (9)) at each shading point for all lights in the
scene before sampling a light. The rendered image using light culling with clamping
is dark as it cannot capture the light bounce effect. On the other hand, stochastic light
culling can reproduce the light bounce effect as seen in the reference images rendered
using the brute-force method.

More complex scenes are rendered using stochastic light culling with reservoir
sampling (Figures 11(b) and (d)). There are 5,186 and 59,270 triangle lights in
scene A, respectively, scene B. Although stochastic light culling reduces the num-
ber of lights to be processed at each shading point, we need to use reservoir sampling
for such scenes with thousands of light sources to keep the memory overhead of stor-
ing light lists at a practical level. To show the advantage of our method, we compared
these to images rendered using the uniform light sampling shown in Figures 11(a)
and (c). The reason we could not use the brute-force method to build the CDF de-
scribed above is because it is computationally too expensive to calculate importance
from all lights and requires too much memory to store the CDF for all lights per shad-
ing point. Note that we need to allocate storage for the worst case per shading point.

53

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

(a) Scene A. Uniform sampling. RMSE: 0.0749. (b) Scene A. Ours. RMSE: 0.0464.

(c) Scene B. Uniform sampling. RMSE: 0.0355. (d) Scene B. Ours. RMSE: 0.0203.

Figure 11. Equal time comparison of the proposed light sampling method and uniform light
sampling (2 min). (a) and (c) are images rendered using the uniform light sampling. (b) and
(d) are images rendered using stochastic light culling and reservoir sampling. There are 1.3M
triangles and 5,186 triangle lights in Scene A, and 1.9M triangles and 59,270 triangle lights
in Scene B. The reference images are rendered using uniform light sampling in 120 min.

These images are rendered in two minutes on the GPU. We used k = 8 for a light list
allocated in local data share for each work item processing a shading point. We allo-
cated the CDF in global memory which is 8 floating point values per shading point.
Therefore, the global memory overhead to store all the CDFs is 28MB to process
1280×720 shading points concurrently.

54

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

6. Discussion

6.1. Limitations

Banding artifacts. Our method exchanges high-frequency noise of Russian roulette
for banding artifacts. Compared to high-frequency noise, reduction of banding arti-
facts is more difficult for geometry-aware filters. However, this limitation is not a big
problem for area lights and many point lights with small εmax.

Directional importance. In this paper, high-frequency radiant intensity and BRDFs
are not taken into account for the light range computation. For path tracing, BRDF-
dependent variance is reduced by MIS. However, we do not address the inefficiency
caused by high-frequency radiant intensity (e.g., VPLs on specular surfaces that repre-
sent caustics). This problem could possibly be solved by using a non-spherical bound-
ing volume for a light range representation. We would like to investigate efficient
bounding volumes for light culling in the future. Culling using tighter bounding vol-
umes cannot only be effective for VPLs, but also other virtual light representations for
glossy indirect illumination (e.g., virtual spherical Gaussian lights [Tokuyoshi 2015]).

6.2. Future Work

Imperfect shadow maps. Although the method in this paper accelerated ISMs using
point cloud culling to achieve real-time frame rates, it is still the main bottleneck in
the VPL-based global illumination algorithm [Ritschel et al. 2011]. For more time-
sensitive applications, we have to further improve the performance of ISMs.

Bidirectional reflective shadow mapping. To efficiently sample VPLs from RSMs,
view-dependent importance on RSMs is estimated by BRSM, which computes indi-
rect illumination exchanging RSMs and a G-buffer. This importance estimation can
also be accelerated by using our stochastic tiled lighting.

Clustering of shading points. Current area-light sampling for path tracing, unlike the
tiled lighting algorithm, does not cluster shading points into groups. For path tracing,
efficient clustering is an interesting problem, since various optimization techniques
can be used once shading points are clustered. For example, overlapping lights can
be found using clusters with smaller computational burden than using each shading
point. Clustering also makes it easy to combine the proposed method with a method
like importance caching [Georgiev et al. 2012] to accelerate importance computation.

Bidirectional path tracing. Veach [1998] used Russian roulette to sample light ver-
tices for bidirectional path tracing. Stochastic light culling can be used for this light
vertex sampling. However, it might be better to take BRDFs into consideration to
make sampling effective. We would like to investigate its effectiveness in the future.

55

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

7. Conclusions

This paper proposed an unbiased light culling method for physically-based lighting.
Unlike existing clamping-based light culling, our method has a sublinear cost for
shading after the culling process when using a user-specified error bound. Integrating
our method into a tiled lighting framework, 65,536 VPLs without shadow maps can
now be handled in about 5 ms with a smaller error than previous techniques. 16,384
AISMs can be generated in about 22 ms by using range-based point cloud culling.
This paper also introduced a light culling algorithm using a bounding sphere tree for
progressive path tracing on the GPU. Hence, light sources can be culled not only for
real-time rendering, but also for multi-bounce global illumination using path tracing
in an unbiased fashion. Using our method for a path tracer, a scene with over 50,000
area lights could be rendered efficiently. The limitation of our method is that culling
using a spherical bounding volume can be inefficient for high-frequency radiant inten-
sity. For future work, we would like to address this issue to achieve a robust algorithm
for various lighting conditions.

A. Error Bound of Clamping Light Ranges

For a clamped light range, the bias of the fall-off function is given by

βi(l) =

{
−f(l), (l ≥ ri)
0, (otherwise)

.

Thus, the imaged absolute error for a single light source is represented as follows:

εi(x, ω̂) = |βi(‖xi − x‖)|EIi(−ω̂′i)V (x,xi)ρ(x, ω̂, ω̂′i) max(ω̂′i · n̂, 0). (11)

Unlike variance, since β(l) is always negative, the error is accumulated for several
light sources. Therefore, the error bound of clamped ranges is given as

εmax ≥
N∑
i

εi(x, ω̂).

Similar to Section 3.2, Lambertian surfaces and the maximum value for each term of
Equation (11) are assumed to estimate the error bound. Using maxl(|βi(l)|) = f(ri),
the estimated error bound is represented as

εmax =
E
∑N

i f(ri) maxω̂′ (Ii(ω̂
′))

π
.

Conversely, when εmax is given by a user-specified parameter, the light range can be
obtained as the following equation:

ri = f−1
(

πεmax

EN maxω̂′ (Ii(ω̂′))

)
=

√
EN maxω̂′ (Ii(ω̂′))

πεmax
.

56

http://jcgt.org

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

For VPLs, since the radiant intensity is inversely proportional to N , the range ri can
be constant regardless of the number of VPLs. Hence, when using a user-specified
error bound for light culling with clamping ranges, the number of light sources to be
evaluated per shading point is linear with respect to the total number of lights.

References

AMD, 2012. AMD graphics cores next (GCN) architecture. URL: https://www.amd.
com/Documents/GCN_Architecture_whitepaper.pdf. 42

AMD, 2014. Radeon SDK - enhance your 3D graphics development. URL: http:
//developer.amd.com/tools-and-sdks/graphics-development/

amd-radeon-sdk/. 41

ANDERSSON, J. 2011. Directx 11 rendering in battlefield 3. In GDC ’11. URL: http:
//www.dice.se/news/directx-11-rendering-battlefield-3/. 37, 44

ARVO, J., AND KIRK, D. 1990. Particle transport and image synthesis. SIGGRAPH Comput.
Graph. 24, 4, 63–66. URL: http://doi.acm.org/10.1145/97880.97886. 36

BALESTRA, C., AND ENGSTAD, P.-K. 2008. The technology of uncharted:
Drake’s fortune. In GDC ’08. URL: http://www.naughtydog.com/docs/
Naughty-Dog-GDC08-UNCHARTED-Tech.pdf. 37

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective shadow maps. In Proceedings
of the 2005 Symposium on Interactive 3D Graphics and Games, ACM, New York, I3D ’05,
203–231. URL: http://doi.acm.org/10.1145/1053427.1053460. 37

DACHSBACHER, C., AND STAMMINGER, M. 2006. Splatting indirect illumination. In Pro-
ceedings of the 2006 Symposium on Interactive 3D Graphics and Games, ACM, New York,
I3D ’06, 93–100. URL: http://doi.acm.org/10.1145/1111411.1111428.
36, 37

GEORGIEV, I., KŘIVÁNEK, J., POPOV, S., AND SLUSALLEK, P. 2012. Importance caching
for complex illumination. Comput. Graph. Forum 31, 2pt3, 701–710. URL: http://
dx.doi.org/10.1111/j.1467-8659.2012.03049.x. 55

HARADA, T., MCKEE, J., AND YANG, J. C. 2012. Forward+: Bringing deferred lighting
to the next level. In Eurographics ’12 Short Papers, The Eurographics Association, Aire-
la-Ville, Switzerland, 5–8. URL: http://dx.doi.org/10.2312/conf/EG2012/
short/005-008. 36, 38

HARADA, T., MCKEE, J., AND YANG, J. C. 2013. Forward+: A step toward film-style
shading in real time. In GPU Pro 4: Advanced Rendering Techniques. A K Peters/CRC
Press, Natick, MA, 115–134. 37

HARADA, T. 2012. A 2.5D culling for forward+. In SIGGRAPH Asia 2012 Technical Briefs,
ACM, New York, NY, USA, SA ’12, 18:1–18:4. 37

KAJIYA, J. T. 1986. The rendering equation. SIGGRAPH Comput. Graph. 20, 4, 143–150.
URL: http://doi.acm.org/10.1145/15902. 36

57

http://jcgt.org
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://developer.amd.com/tools-and-sdks/graphics-development/amd-radeon-sdk/
http://developer.amd.com/tools-and-sdks/graphics-development/amd-radeon-sdk/
http://developer.amd.com/tools-and-sdks/graphics-development/amd-radeon-sdk/
http://www.dice.se/news/directx-11-rendering-battlefield-3/
http://www.dice.se/news/directx-11-rendering-battlefield-3/
http://doi.acm.org/10.1145/97880.97886
http://www.naughtydog.com/docs/Naughty-Dog-GDC08-UNCHARTED-Tech.pdf
http://www.naughtydog.com/docs/Naughty-Dog-GDC08-UNCHARTED-Tech.pdf
http://doi.acm.org/10.1145/1053427.1053460
http://doi.acm.org/10.1145/1111411.1111428
http://dx.doi.org/10.1111/j.1467-8659.2012.03049.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03049.x
http://dx.doi.org/10.2312/conf/EG2012/short/005-008
http://dx.doi.org/10.2312/conf/EG2012/short/005-008
http://doi.acm.org/10.1145/15902

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

KELLER, A. 1997. Instant radiosity. In Proceedings of the 24th Annual Conference on
Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing
Co., New York, SIGGRAPH ’97, 49–56. URL: http://doi.acm.org/10.1145/
258769. 36, 37

NEHAB, D., SANDER, P. V., LAWRENCE, J., TATARCHUK, N., AND ISIDORO, J. R.
2007. Accelerating real-time shading with reverse reprojection caching. In Proceedings of
the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, Euro-
graphics Association, Aire-la-Ville, Switzerland, 25–35. URL: http://dl.acm.org/
citation.cfm?id=1280094.1280098. 41

NICHOLS, G., AND WYMAN, C. 2010. Interactive indirect illumination using adaptive
multiresolution splatting. IEEE Trans. Vis. Comput. Graph. 16, 5, 729–741. URL: http:
//doi.ieeecomputersociety.org/10.1109/TVCG.2009.97. 36, 37

OLSSON, O., AND ASSARSSON, U. 2011. Tiled shading. J. Graph. GPU, and Game Tools,
235–251. URL: http://www.tandfonline.com/doi/10.1080/2151237X.
2011.621761. 36

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Clustered deferred and for-
ward shading. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Confer-
ence on High-Performance Graphics, Eurographics Association, Aire-la-Ville, Switzer-
land, EGGH-HPG’12, 87–96. URL: http://doi.acm.org/10.1145/2383809.
36, 37

OLSSON, O., SINTORN, E., KÄMPE, V., BILLETER, M., AND ASSARSSON, U. 2014.
Efficient virtual shadow maps for many lights. In Proceedings of the 18th Meeting of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York,
I3D ’14, 87–96. URL: http://doi.acm.org/10.1145/2556701. 38

PERSSON, E., AND OLSSON, O. 2013. Practical clustered deferred and forward shading.
In SIGGRAPH ’13 Course: Advances in Real-Time Rendering in Games, ACM, New
York. URL: http://www.cse.chalmers.se/˜olaolss/main_frame.php?
contents=publication&id=practical_clustered_2013. 41

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHSBACHER, C., AND

KAUTZ, J. 2008. Imperfect shadow maps for efficient computation of indirect illumi-
nation. ACM Trans. Graph. 27, 5, 129:1–129:8. URL: http://doi.acm.org/10.
1145/1457515.1409082. 37, 38, 42

RITSCHEL, T., GROSCH, T., KAUTZ, J., AND SEIDEL, H.-P. 2008. Interactive global
illumination based on coherent surface shadow maps. In Proceedings of Graphics Interface
2008, Canadian Information Processing Society, Toronto, Ont., Canada, GI ’08, 185–192.
URL: http://dl.acm.org/citation.cfm?id=1375714.1375747. 50

RITSCHEL, T., EISEMANN, E., HA, I., KIM, J. D., AND SEIDEL, H.-P. 2011. Making
imperfect shadow maps view-adaptive: High-quality global illumination in large dynamic
scenes. Comput. Graph. Forum 30, 8, 2258–2269. URL: http://onlinelibrary.
wiley.com/doi/10.1111/j.1467-8659.2011.01998.x/abstract. 37,
38, 42, 55

58

http://jcgt.org
http://doi.acm.org/10.1145/258769
http://doi.acm.org/10.1145/258769
http://dl.acm.org/citation.cfm?id=1280094.1280098
http://dl.acm.org/citation.cfm?id=1280094.1280098
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.97
http://doi.ieeecomputersociety.org/10.1109/TVCG.2009.97
http://www.tandfonline.com/doi/10.1080/2151237X.2011.621761
http://www.tandfonline.com/doi/10.1080/2151237X.2011.621761
http://doi.acm.org/10.1145/2383809
http://doi.acm.org/10.1145/2556701
http://www.cse.chalmers.se/~olaolss/main_frame.php?contents=publication&id=practical_clustered_2013
http://www.cse.chalmers.se/~olaolss/main_frame.php?contents=publication&id=practical_clustered_2013
http://doi.acm.org/10.1145/1457515.1409082
http://doi.acm.org/10.1145/1457515.1409082
http://dl.acm.org/citation.cfm?id=1375714.1375747
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.01998.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.01998.x/abstract

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PÉROCHE, B. 2006. Non-interleaved
deferred shading of interleaved sample patterns. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, ACM, New York, GH ’06,
53–60. URL: http://doi.acm.org/10.1145/1283900.1283909. 37, 42

TALBOT, J. F., CLINE, D., AND EGBERT, P. K. 2005. Importance resampling for global
illumination. In Proceedings of the Sixteenth Eurographics Conference on Rendering Tech-
niques, Eurographics Association, Aire-la-Ville, Switzerland, EGSR ’05, 139–146. URL:
http://dx.doi.org/10.2312/EGWR/EGSR05/139-146. 51

TOKUYOSHI, Y. 2014. Point cloud culling for imperfect shadow maps. In SIGGRAPH
ASIA ’14 Course: GPU Compute for Graphics, ACM, New York, 8:138–8:140. URL:
http://www.jp.square-enix.com/info/library/. 43

TOKUYOSHI, Y. 2015. Virtual spherical gaussian lights for real-time glossy indirect illumi-
nation. Comput. Graph. Forum 34, 7, 89–98. URL: http://www.jp.square-enix.
com/info/library/. 55

VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining sampling techniques for monte
carlo rendering. In Proceedings of the 22nd Annual Conference on Computer Graphics
and Interactive Techniques, ACM, New York, SIGGRAPH ’95, 419–428. URL: http:
//doi.acm.org/10.1145/218380.218498. 48

VEACH, E. 1998. Robust Monte Carlo Methods for Light Transport Simulation. PhD
thesis, Stanford University. URL: https://graphics.stanford.edu/papers/
veach_thesis/. 55

VITTER, J. S. 1985. Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 1,
37–57. URL: http://doi.acm.org/10.1145/3165. 50

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K., DONIKIAN, M., AND GREEN-
BERG, D. P. 2005. Lightcuts: A scalable approach to illumination. ACM Trans. Graph.
24, 3, 1098–1107. URL: http://doi.acm.org/10.1145/1186822.1073318.
37

WU, O. 2012. Enhancing graphics in unreal engine 3 titles using new code submissions. In
GDC ’12. URL: http://amd-dev.wpengine.netdna-cdn.com/wordpress/
media/2012/10/Enhancing%20Graphics%20in%20Unreal%20Engine%

203%20Titles%20using%20New%20Code%20Submissions.ppsx. 43

ZAFAR, F., OLANO, M., AND CURTIS, A. 2010. GPU random numbers via the tiny
encryption algorithm. In Proceedings of the Conference on High Performance Graph-
ics, Eurographics Association, Aire-la-Ville, Switzerland, HPG ’10, 133–141. URL:
http://doi.acm.org/10.1145/1921500. 44

Index of Supplemental Materials

The videos for our stochastic tiled lighting can be found at
http://www.jcgt.org/published/0005/01/02/JCGT-SLC.mp4 and
http://www.jcgt.org/published/0005/01/02/JCGT-SLC2.mp4.

59

http://jcgt.org
http://doi.acm.org/10.1145/1283900.1283909
http://dx.doi.org/10.2312/EGWR/EGSR05/139-146
http://www.jp.square-enix.com/info/library/
http://www.jp.square-enix.com/info/library/
http://www.jp.square-enix.com/info/library/
http://doi.acm.org/10.1145/218380.218498
http://doi.acm.org/10.1145/218380.218498
https://graphics.stanford.edu/papers/veach_thesis/
https://graphics.stanford.edu/papers/veach_thesis/
http://doi.acm.org/10.1145/3165
http://doi.acm.org/10.1145/1186822.1073318
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Enhancing%20Graphics%20in%20Unreal%20Engine%203%20Titles%20using%20New%20Code%20Submissions.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Enhancing%20Graphics%20in%20Unreal%20Engine%203%20Titles%20using%20New%20Code%20Submissions.ppsx
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Enhancing%20Graphics%20in%20Unreal%20Engine%203%20Titles%20using%20New%20Code%20Submissions.ppsx
http://doi.acm.org/10.1145/1921500
http://www.jcgt.org/published/0005/01/02/JCGT-SLC.mp4
http://www.jcgt.org/published/0005/01/02/JCGT-SLC2.mp4

Journal of Computer Graphics Techniques
Stochastic Light Culling

Vol. 5, No. 1, 2016
http://jcgt.org

Author Contact Information
Yusuke Tokuyoshi
Square Enix Co., Ltd.
Shinjuku Eastside Square
6-27-30 Shinjuku, Shinjuku-ku
Tokyo 160-8430, Japan
tokuyosh@square-enix.com

Takahiro Harada
Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale CA 94088-3453
Takahiro.Harada@amd.com

Y. Tokuyoshi and T. Harada, Stochastic Light Culling, Journal of Computer Graphics Tech-
niques (JCGT), vol. 5, no. 1, 35–60, 2016
http://jcgt.org/published/0005/01/02/

Received: 2015-03-23
Recommended: 2015-10-04 Corresponding Editor: Angelo Pesce
Published: 2016-03-28 Editor-in-Chief: Marc Olano

c© 2016 Y. Tokuyoshi and T. Harada (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

60

http://jcgt.org
mailto:tokuyosh@square-enix.com
mailto:Takahiro.Harada@amd.com
http://jcgt.org/published/0005/01/02/
http://creativecommons.org/licenses/by-nd/3.0/

