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Other SESSIONS
ANGRY EFFECTS SALAD

Visual Effects of Final Fantasy XV: Concept, Environment, and Implementation

Monday, 25 July, 2-3:30 pm

BUILDING CHARACTER

Character Workflow of Final Fantasy XV

Tuesday, 26 July, 2-3:30 pm

BRAIN & BRAWN

Final Fantasy XV: Pulse and Traction of Characters

Tuesday, 26 July, 3:45-5:15 pm

PLAYING GOD

Environment Workflow of Final Fantasy XV

Wednesday, 27 July, 3:45-5:15 pm

ELECTRONIC THEATER

The Universe of Final Fantasy XV

Mon, 25 July, 6-8 pm / Wed, 27 July, 8-10 pm

REAL-TIME LIVE

Real-Time Technologies of FINAL FANTASY XV Battles

Tuesday, 26 July, 5:30-7:15 pm



• Action role-playing game
• PlayStation4, XBoxOne
• Release date: Sept 30, 2016

• Demos
– Episode Duscae

– Platinum Demo

Final Fantasy XV



• The most “open-world” FF
– Indoor & outdoor

– Day/night cycles

– Dynamic weather

– Sky and weather are a big part 
of storytelling

Final Fantasy XV



https://youtu.be/CzIsbgDt5oM


Agenda

• Basic Rendering

• Global Illumination

• Sky

• Weather



Basic features
• Modern AAA-class engine
• The usual suspects

– Physically-Based Shading
– Linear workflow
– Deferred & forward
– Tile-based light culling
– IES lights
– Cascaded Shadow maps
– Temporal Antialiasing
– Use of Async Compute
– Node based authoring
– etc.

Picture CG

Pre-render Real-time

Tools & Authoring



• Physically-based BRDF model

– Torrance-Sparrow BRDF
• Normal distribution function = Trowbridge-Reitz 

(GGX)

• Masking function = Schlick-Smith

• Fresnel term = Schlick

– Roughness/metallic control

– Lambertian diffuse

Shading



Shading
Deferred

– Basic BRDF material

Forward
– Transparent

– Special materials

Tricks for special materials
• Eyes: D=diffuse, F=second specular

• Car paint: D=diffuse, F=extra layers (flake/clear coat)

• Skin: D=diffuse+spec(2 RTs), blur diffuse, F=combine

• Hair: D=depth/normal, F=all shading

etc.



G-buffer

R G B A

depth stencil

compressed normal roughness

albedo occlusion

- specular

F32_S8

RT0

RT1

RT2

Used to support special materials (backscatter color, hue shift, etc.)

G-buffer layout for basic BRDF material

metallic -

・Used to identify BRDF etc.
・flags for specific processes



Agenda

• Basic Rendering

• Global Illumination

– Indirect Diffuse

– Specular Reflection

• Sky

• Weather



Lighting: Requirements

• Seamless indoor/outdoor transitions

• Moving vehicles (e.g. train cars)

• Time of Day 

• Dynamic Weather

• Cannot rely only on static baked lighting data

• Data storage requirements

Hybrid GI strategy based on both dynamic/static data.



Indirect Diffuse: Local probe

• We use grids of local light probes
– Can be placed to fit navigation meshes or 

heightmaps automatically

• Organized into hierarchies of grids
– overlapping light probe grids

– 𝑤1𝐶1 +⋯+𝑤𝑁𝐶𝑁 + 1 − (𝑤1+⋯+𝑤𝑁) 𝐾

• 𝑤𝑖:weights, 𝐶𝑖: diffuse by probe, 𝐾: diffuse by sky

– Controls of fade-out regions

– Controls of blending priorities

Probe1

area
Probe2

area

Probe0

area



Indirect Diffuse: Local probe
A given probe grid can have either:

• Precomputed Radiance Transfer (PRT) 

– Sky occlusion

– fully outdoor scenarios

• Irradiance Volumes (IV)

– Diffuse lighting from static local lights

– fully indoor scenarios

• Both 

– outdoor towns, rooms with windows, etc…



Indirect Diffuse: Local probe

• PRT transfer matrices calculated by in-house path tracer
– Matrix of SH coefficients (order 3 SH)

• Both IV and PRT data stored together
– IV (order 3 SH)  is just an additional row to the PRT transfer matrix

For each 9 coefficients of SH
For each RGB channel.

(sky SH) * (PRT transfer matrix) + (irradiance SH)

Run time data Baked data

At runtime, we light the probes:



Indirect Diffuse: Moving probe
• Handling moving environments

– Trains and airships have probes inside.

– The environment itself can move and 
rotate relative to the outside

Probes can be attached
to train wagons

Solution: 
Bake probes with local environment
Rotate SH data at run time based on 
relative orientation to the sky.



• Screenspace Ambient Occlusion
– Custom algorithm created in collaboration 

with the LABS group [Michels et al. 2015]

– Half-res AO/blur with upsampling

– 8 samples

– Use temporal reprojection

• Analytical AO
– “AO spheres” attached to foliage & heroes

– Apply analytical AO in tiled fashion 
• less than 1ms

Indirect Diffuse: Local occlusion



• Screenspace Ambient Occlusion
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– Half-res AO/blur with upsampling

– 8 samples
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Indirect Diffuse: Local occlusion



• We disabled RSM(Reflective Shadow Map)-based dynamic GI.
– Light Propagation Volumes [Kaplanyan 2010]

– Virtual Spherical Gaussian Lights [Tokuyoshi 2015]

• Completely dynamic, but RSMs were expensive for our game.
– Lots of high-poly scenes in our game.

• Instead, we use computational resources for rendering dynamic 
natural environment like sky/clouds.

Indirect Diffuse: Dynamic light bounce ?



Agenda

• Basic Rendering

• Global Illumination

– Indirect Diffuse

– Specular Reflection

• Sky

• Weather



Specular Reflection
Tiered system

• Global cubemap (sky box)
– Updated by time of day and weather

– Filtering is spread over multiple frames

• Local cubemaps with parallax correction
– We want to support time-of-day change

• Screenspace reflection [Wronski 2014, Valient 2014]

– Classic ray march

– Roughness-based bilateral blur (half-res)& upsample

n

cube map



Specular Reflection

• Problems with classic local cubemaps
– Static. How to handle time-of-day / weather changes?

– Baking probes at runtime is too expensive.

• Typical workaround:
– 1. Re-light cubemap at runtime using a mini G-buffer [McAuley 2015]

• Still expensive

– 2. Blend between probes baked in different time/weathers

• Blending artifacts



Specular Reflection

Our solution

• Split into 3 components:

– 1. Sky pixel

– 2. Pixel not affected by time of day (local lights / emissive )

– 3. Pixel affected by time of day (e.g. sun and sky)

• Fast to evaluate

• Less memory footprint.



Specular Reflection

• 1st component: Sky Mask
– At bake time

• Generate mask that identifies “sky” pixels

– At runtime 

• shaders fall back to the dynamic skybox based on this 
mask

• reflection vectors that hit the sky see moving clouds!



• 2nd component: Baked static lighting
– At bake time

• Turn off : sun, skylight, fog, atmospheric scattering, etc.. 

• Do a cubemap capture & filter

– At runtime

• Use the map as-is, with a roughness-based lookup

• same as in [Valient 2014]

Specular Reflection



• 3rd component = Sun and Sky 
– At bake time

• Keep all lights ON and render

• Substract previous “local lighting” to get a cubemap of the scene 
as lit by only the sun and sky

• Sky color (constant term of sky SH) divided out before saved

– At runtime
• Sky color for the current frame is multiplied back in

Specular Reflection



Specular Reflection
• Summary

Baked local light data

Normalized baked sky data

Constant term of the SH-projected sky box

Baked sky mask

Sky box color

𝑆𝑛𝐷𝑟 + 𝐿 1 −𝑀 + 𝐾𝑟𝑀Reflection =

static
data

dynamic
data



Specular Reflection

• Data storage

– If we implement naïvely, we would need 7 channels
• 𝑆𝑛 : sun and sky lighting, RGB  (HDR)

• 𝐿 : baked local light data, RGB  (HDR)

• 𝑀 : sky mask, float {0, 1}

– Of course, we will compress



Specular Reflection

Key idea

• Assume that 𝑆𝑛 and 𝐿 have roughly similar color.

Reflection = 𝑆𝑛𝐷𝑟 + 𝐿 1 −𝑀 + 𝐾𝑟𝑀

𝑆𝑛(𝐷𝑟 + 𝑅) with 𝑅 = 𝐿/𝑆𝑛

We approximate the ratio R with a single channel.

Note that 𝑆𝑛 can be zero indoor, and 𝐿 can be zero outdoor.



Specular Reflection

Solution

1. Pick S or L as the key color



Specular Reflection

Solution

1. Pick S or L as the key color

2. Disambiguate at runtime using [0-2] range



Specular Reflection: results

Time 12:00

Windows opened 
to the outside 

skybox

Local lights
(off now)



Specular Reflection: results

Lit by sky light.

Time 12:00



Specular Reflection: results

Time 18:30

The sun is getting lower. Sky color is changing.



Specular Reflection: results

Sunset. The scene is still lit by sky. Indoor lights switched on.

Time 19:20



Specular Reflection: results

Time 23:50

Lit by indoor lights. The sky is dark.



Summary

Procedural 
sky & clouds

Time of day & 
Weather

Direct Sunlight

Normalized sky data

Specular
probes

Direct 
diffuse & specular

Runtime

Offline

Indirect diffuse

Environment
Reflection

Cloud Shadow map

Sky box color

Sky box SH-projection

Sky mask

Diffuse
probes

Local light data

IV data

PRT data



Agenda

• Basic Rendering

• Global Illumination

• Sky
– Sky

– Atmospheric Scattering

– Clouds

– Sky Cubemap

• Weather



Sky: Requirements

• Dramatic changes in atmosphere

• Linked with lighting and weather

• Quick but smooth transitions
– from a cloudy afternoon to a rainy evening

– from a clear starry sky to a red dawn

• Artist-Directable



Approach

• Generate the whole sky procedurally

– Sun

– Stars

– Moon

– Clouds

– Atmospheric scattering



Sky Rendering

• Layers of sky: 
– Celestial objects

• Milky way: on a cylindrical surface

• Small stars: repeated textures

• Large stars: billboards, instanced

• Moon

• Sun

– Clouds + Atmospheric scattering (sky)

– Atmospheric scattering (aerial perspective, fog to objects)



Atmospheric Scattering

• Standard models in games:

– Single scattering model [Hoffman, Preetham, 2002]

• + Fog can be rendered with the sky

• - No twilight. Completely dark after sunset.

• - Unintuitive artistic controls.

– Precomputation/Analytical model [Bruneton, 2008], [Preetham, 1999], [Hosek, 2012]

• Better artistic controls. 

• Didn’t match our reference photo well enough.

-- we chose this model, but made static data on our own.



Atmospheric Scattering (Sky)
• Strategy: precomputed approach

– Combine of LUTs (Lookup tables) and Rayleigh/Mie scattering function

– Sky = 𝐿𝑢𝑡𝑅 𝜃, 𝛾 ∗ 𝑝ℎ𝑎𝑠𝑒𝑅(𝜇) + 𝐿𝑢𝑡𝑀 𝜃, 𝛾 ∗ 𝑝ℎ𝑎𝑠𝑒𝑀(𝜇, 𝑔)
• 𝜃: sun-zenith angle, 𝛾: view-zenith angle, 𝜇: angle from the sun

– 𝑝ℎ𝑎𝑠𝑒𝑅 = 1 + cos2 𝜇, (constants omitted for simplicity)

– 𝑝ℎ𝑎𝑠𝑒𝑀 =
1−𝑔2

2+𝑔2
∗ 𝑝ℎ𝑎𝑠𝑒𝑅 ∗ 1 + 𝑔2 − 2𝑔 cos 𝜇 −1.5, 𝑔: ”haziness” in [0,1)

= +

sky “Rayleigh part” “Mie part”



Atmospheric Scattering (Sky)

• Generate LUTs offline
– A least squares fitting

– Ray-trace sky (inscatter) based on real sky database. 

• We dropped: High level view of sky, Earth’ shadow, etc.
– Instead, we use the simple sky formula/LUTs.

– but it was enough for our game.

• Special case: Overcast sky
– It uses different model [ISO 2004]

– So we ended up mixing two models.

1+2 sin 𝛾

3
∗ 𝐿zoc , 𝐿zoc: zenith luminance



Atmospheric Scattering (Aerial perspective)

• Aerial perspective
– (inscatter color) + (transmittance) * (object color)

• Transmittance: Beer’s law
– (transmittance) = exp(-a*distance)  

• Inscatter color
– (above pic) Bluish color addition in the distance.

– In theory, inscatter is diff of sky colors at two points

inscatter1 – inscatter0

– We cannot get inscatter0 from our sky LUTs.

• We made different  LUTs.

inscatter1

inscatter0



• Inscatter for aerial perspective

– Inscatter only in horizontal direction.

– Incatter is a combination of:
• Mid-ground LUTs and a background LUT , for each Rayleigh/Mie 

component.

• LUTs are combined with B-spline basis functions.

– Background LUT is horizon part of sky LUT.

– Designers can tint mid-ground color.

Atmospheric Scattering (Aerial perspective)



Clouds



Clouds: Modeling

• Range
– Above the camera position
– Within user-defined range (altitude min/max, horizontal radius)

• Density Function
– Combination of noise with 7 octaves

• Different amplitude/animation speed for each.
• Lowest octave -> rough cloud shape.
• 2 lowest octaves ->  rough shape animation
• Higher octaves -> details.

– Noise is obtained by sampling a small 3d texture.
– Lots of parameters exposed to designers to make variation.

max

min



Clouds: Lighting

• Light clouds by raymarching
– Three light sources:

• Direct light from sun/moon
• ambient from above (sky)
• ambient from below (ground).

• Cloud opacity
– is also calculated along with raymarching.
– in order to blend the clouds with the sky dome.

• 4 results are packed into a RGBA8 texture.

Sky ambient

Ground ambient

Sun



Clouds: Lighting

• Direct light from sun/moon 
– Ray march with single scattering model.

– We don’t use the 2nd ray march to the sun

– Instead, we use extinction transmittance map

• how much the light reaches the sample [Gautron, et al. 

2011]

• Ambient is analytically computed
– Integral over hemisphere assuming that the 

density is constant.



Clouds: Lighting

• Mie Scattering
– Scattering phase function is factored out from the ray march.

– Phase function gives directionality to the lighting.
• Clouds close to the sun are brighter



• ETM (Extinction Transmittance Maps)
[Gautron, et al. 2011]

– Clouds’ self shadow
– Shadow on the surface

• Transmittance curve along sun ray.
• A curve is encoded into: 

– 4 values using DCT (Discrete Cosine 
Transformation)

– 2 values for start/end point of the curve

• These values are packed into 2 textures.

Clouds: Shadow



Clouds: Implementation

• Data storage
– Raymarching results

• 1536x1536, RGBA8 texture x3

– ETM
• 512x512, RGBA8 texture

• 512x512, RG16 texture

– Shadow map for ground
• 512x512, R8 texture x3



Clouds: Implementation
• We amortize the cost across several frames. 

– Raymarching : sky dome is split into 64 slices. 1 slice update/ frame.

– ETMs for 4 frames.

– Shadow map for ground.

• Async compute



Clouds: Sky dome

• Project clouds onto sky dome:

– Cross-fade two cloud raymarch results over time

• While the other one is being updated.

– Wind Animation



Clouds: Wind

• Wind animation
– 7 different animation speed in density function.

• Choose dominant speed.

– Assume clouds travel at a given fixed height.

– Take into account perspective 
• Far clouds travels at a slower pace

• Aerial perspective

• Animate cloud shadow in the same way



Sky Cubemap

• Dynamic sky cubemap

– Render only sky & clouds into cubemap

– Lower hemisphere is user-defined “ground”
• Lit by sky/sun as diffuse material

• SH Projection of Cubemap
– For diffuse lighting by skylight.

– Can be combined with PRT.



Sky Cubemap

• Frame rate stability
– Smaller mip levels require more filter kernel samples

– Hence the filtering cost per frame stays roughly constant.

• Problem: fast change of sky (e.g. around sunset)
– Sky cubemap’s intensity is divided by total sky luminance.

• BRDF Filtering of cubemap
– 1 face/1 mip updated per frame

– total cycle: 48 frames (6 faces x 8 mips)



Exposure

• Problem
– Wide range of luminance

• Sun luminance = Moon luminance * 400,000
• We use real sky values by default.

– Floating point precision issue.
– Brightest pixels can be clamped.

• Solution
– Exposure value is multiplied to all light sources, sky, etc.
– Not apply to screen at the post-processing stage.



Results

4:30



Results

5:10



Results

12:00



Results

18:50



Results

21:00



Calibration by artists

• Photo shooting

– Actual cubemap reference

– 24-hours straight in HDRI

• Lighting for game

– Calibrated each parameter 
based on the photo data

IBL Procedural sky



Agenda

• Basic Rendering

• Global Illumination

• Sky

• Weather
– Volumetrics

– Rain

– Wind

– Weather System



Volumetrics (fog, light shafts)
• 3d grid (160x90x64)

– System like [Wronski, 2014]

– Range: normally ~100m
• Use different system for distant fog

• Lighting (optional per light)
– Directional light

– Local lights

– Light probes

• Sample blurred shadow that makes light shafts

• Noise, wind animation, etc.



Local Lights
• Tile/Depth culling 

– 32 depth slices, logarithmical

– Low-res depth min/max texture

– Each tile has a light list, and each cell has 
min/max of light list.

– Light probes use tile culling.

• Local shadow map
– Dynamic resizing of local shadow map.

– Texture atlas

Tile culling

Tile-depth culling

Color shows the number of  lights in tile



Rain
• Rain drops

– GPU particle system

– Falling particles centered on camera

– Depth map collision
• Render depth map from top view

– Splash particles emitted from the 
surface

• Character Interaction



Wet Materials
• Wet shader permutation

– Almost everything can get wet.

– Wetness [Lagarde 2012]

• Increases specular

• Decreases roughness

• Darkens diffuse

• Distortion of normal



Wet Materials
• With in-house shaders, we made:

– Puddles

– Ripples

– Trickling water

– etc.



Rain: Problems

• Camera sometimes moves too fast.
– e.g. Player character (Noctis) can warp

– Solution: We shift particle positions during simulation when that happens.

• Wetness to dynamic objects
– Characters/vehicles can get dry instantly when moving under a roof.

• Because we use depth map from top view.

– Solution: designers can place “Non wet” box.

• Wetness decreases smoothly when they moved into a box.



Wind

• Wind system
– Affects bone-based simulation

• e.g. cloth, hair, fur

– Affects vertex-based procedural motion

• e.g. vegetation, fur

– Wave functions can be “drawn” by designers



Weather System

• Links “weather” (set of parameters) with game entities
– Parameters: sky, rain, wind, etc.

• Affect shading, vfx, animation, etc.

– Entity: area box, sequence node

• Animates parameters and changes weather.

a weather file
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Extra slides for Q&A



Specular Reflection

where 𝑘𝑒𝑦𝑐𝑜𝑙𝑜𝑟 = 𝑆𝑛 + 𝐿

𝑟𝑎𝑡𝑖𝑜 = 𝑙𝑢𝑚(𝑆𝑛) / 𝑙𝑢𝑚(𝑆𝑛 + 𝐿)

𝑆𝑛𝐷𝑟 + 𝐿 ≈ 𝑆𝑛 + 𝐿 ∗
𝑙𝑢𝑚 𝑆𝑛 ∗ 𝐷𝑟 + 𝑙𝑢𝑚 𝐿 . xxx

𝑙𝑢𝑚 𝑆𝑛 + 𝐿
= 𝑘𝑒𝑦𝑐𝑜𝑙𝑜𝑟 ∗ (𝑟𝑎𝑡𝑖𝑜 ∗ 𝐷𝑟 + 1 − 𝑟𝑎𝑡𝑖𝑜)

Another solution: lerp between indoor/outdoor case

𝑆𝑛𝐷𝑟 + 𝐿 1 −𝑀 + 𝐾𝑟𝑀



Rendering pipeline

• Use of Async pipes

Vfx update

Sky (render&filter)

Ocean update

shadows

Draw Gbuffer

Volumetric update
(shadow&accumulation)

Light Culling

Dif probe culling

Spec probe culling

Indirect diffuse

Indirect specular

Dir/spot/point light

forward

Fog & volumetrics

Post process

SAO

SSR

Main Async 0 Async 1

Foliage culling

sync

sync


