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Abstract. Visual script languages with a node-based interface have
commonly been used in the video game industry. We examined the
bug database obtained in the development of FINAL FANTASY XV
(FFXV), and noticed that several types of bugs were caused by simple
mis-descriptions of visual scripts and could therefore be mechanically
detected.
We propose a method for the automatic verification of visual scripts in
order to improve productivity of video game development. Our method
can automatically detect those bugs by using symbolic model checking.
We show a translation algorithm which can automatically convert a vi-
sual script to an input model for NuSMV that is an implementation of
symbolic model checking.
For a preliminary evaluation, we applied our method to visual scripts
used in the production for FFXV. The evaluation results demonstrate
that our method can detect bugs of scripts and works well in a reasonable
time.

Keywords: Formal methods Symbolic model checking Visual script
Game development

1 Introduction

In the recent video game industry, game designers write game logic using script
languages. Since most of game designers are not familiar with writing programs,
the use of visual script languages allow designers to perform such scripting op-
eration, and thus help improve the productivity of game logic development. In
particular, visual script languages with a node-based interface are widely used
in game development.

However, it is hard to maintain game logic written in visual script languages
because they can quickly become large and complicated during the course of
production, and thus become hard to verify or modify, and very prone to human
error.

We examined the bug database obtained in the development of FINAL FAN-
TASY XV (FFXV) [7], and noticed that several types of bugs were caused indeed
by simple mis-descriptions of visual scripts. A system that can automatically de-
tect such mis-descriptions would had been a great help to our production.
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Since most visual script implementations could be treated as a kind of state
machine [8], and model checking is a well-researched technique to automatically
verify finite state machines [5], we propose in this paper a method for automatic
verification of visual script notations with symbolic model checking [3] for effi-
cient game production. Our main contributions are the following. (1) To apply
symbolic model checking to verify visual scripts, we provide a translation algo-
rithm from a visual script description to an input model for NuSMV [5], that
is an implementation of symbolic model checking. (2) We show a preliminary
evaluation of our method by applying it to visual scripts which are produced in
the development of FFXV, and demonstrate that most of the verification tasks
are completed in a realistic amount of time.

The rest of this paper is organized as follows. We first introduce prerequisite
topics and show a motivating example in section 2. Section 3 explains the pro-
posed method. Section 4 provides the translation algorithm from a visual script
to an input model which can be accepted to NuSMV. Section 5 explains how
to write node semantics. We show the results of our preliminary evaluation in
section 6 and conclude our work in section 7.

2 Background

2.1 Model Checking

Model checking is an automatic technique for verifying correctness properties of
a finite-state system [6]. The verification procedure is performed by an exhaus-
tive search over the state space. Since the size of the state space exponentially
increases with the number of system components, it is difficult to apply model
checking to large-scale systems. Symbolic model checking can efficiently han-
dle large-scale systems by replacing explicit state representation with boolean
formula.

NuSMV [5] is one of the most successful implementations of symbolic model
checking. The model verified by NuSMV is written by a specific input language
(called SMV language). The properties to be checked is expressed by temporal
logic LTL (Linear Temporal Logic) [14] and CTL (Computational Tree Logic) [1].

MODULE main
VAR

sw : {on, off};
ASSIGN

init(sw) := {on, off};
next(sw) := case

sw = on : off;
TRUE : sw;

esac;
CTLSPEC AG (AF sw = on)

Fig. 1. An example model described in SMV language
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Fig. 1 is an example of an input model to NuSMV. The input model described
by SMV language is composed of variable declaration part (described by VAR)
and transition relation definition part (described by ASSIGN). The property is
expressed as a LTL formula (described by LTLSPEC) or a CTL formula (described
by CTLSPEC).

This example has one variable sw which may have one of the two values on and
off. In its initial state, either on or off is assigned to sw non-deterministically.
In the case that sw is on, sw becomes off in the next state, or sw does not
change its value. Thus the sequence of the value of sw can be either on, off,
off . . . (when the initial value is on) or off, off . . . (when the initial value is
off). The CTL formula in this example has two CTL operators AG and AF.
AG represents “in Any path” and “Globally,” and AF represents “in Any path”
and “in the Future.” This formula expresses the following property: the system
always satisfies that sw necessarily becomes on. When the model is inputted to
NuSMV, NuSMV returns FALSE for this property because there is a path where
sw continues to be off. Fig. 2 shows the result and the counterexample generated
by NuSMV. The counterexample shows the path where sw continues to be off.

-- specification AG (AF sw = on) is false
-- as demonstrated by the following

execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
sw = on
-- Loop starts here
-> State: 1.2 <-
sw = off
-> State: 1.3 <-

Fig. 2. A counterexample generated by NuSMV

2.2 Motivating Example

Many game development environments have their own visual scripting system
such as the Blueprint in Unreal Engine [18], [12], [9]. Although there are slight
differences among each of visual scripting system, their syntax and semantics
are basically the same. In this paper, readers can assume the Blueprint [18] as
the visual scripting system since its syntax and semantics are very similar to our
in-house visual scripting system.

In the development with node-based visual script languages, logic is described
as a node graph which is composed of nodes and edges. Nodes express values, vari-
ables, arithmetic operators, or control statements of the visual script, which cor-
respond to statements in text-based script languages such as if/while-statements,
assignments, and so on. Since the purpose of visual scripts is to control game
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components such as sound, visual effect, and so on, many nodes express invoca-
tions of APIs of those components. For example, “Play SE” node notifies sound
component of the game system to start playing sound effect, “Fade Out” node
notifies screen effect component to start fade-out effect 3. Edges connect nodes
through input and output ports, and express data and control flows.

Fig.3 shows an example of visual script. Note that we omitted data flow
edges in fig. 3 such as the condition value inputted to If node. This is because
our method does not address the detection of bugs caused by an illegal data
flow. This example has the following behavior:

– When Movie Clip node receives an input signal through the Start port, it
starts playing the movie clip, and sends output signal through the Finished
port when it finishes playing. If the movie clip is skipped by a game player,
it sends output signal through the Skipped port instead of the Finished port.

– The Set Event Mode node modifies the global flag variable “event mode”.
When it receives the input signal through the Enable or Disable port, the
event mode flag becomes true or false respectively. This example includes
two Set Event Mode nodes, and both of them modify the same variable
instance since the “event mode” variable is not a variable in the script but
a variable in the external game system.

– If node is used for conditional branch like if-statement in text-based lan-
guages. Its condition value is inputted through data flow port. As stated
above, we omit such ports.

– The global flag variable “event mode” must be true during playing the movie
clip, and must be false otherwise in order to change some game state during
playing movie such as disabling gamepad, etc.

Note that Movie Clip node has its own state transition, and sends output
Finished or Skipped independently from the original control flow. It means that
there can be multiple activated nodes and multiple activated control signals in
a graph. It is one of the significant differences of visual script languages from
Statecharts and a reason that we can not directly apply prior research to visual
script languages.

Fig. 3. An example of node-based visual script (including a typical bug)

3 “fade out” is a gradual transition from the game screen to blank image, used in
movies, games, etc.
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This example contains a bug that actually often occurred during the develop-
ment of FFXV. It appears that the False port of the If node has no connection.
Therefore, if Movie Clip branches to Skipped and then If branches to False, the
event mode flag is not changed and remains to be true. It causes incorrect be-
havior since the event mode flag is true after playing the movie.

There were a wide variety of similar bugs during the development of FFXV,
e.g. “BGM is not changed correctly in some cases.”, “Enemy characters never
respawn in a specific condition.”, and so on. Moreover, since many game logic
scripts are written by game designers who are not familiar with writing pro-
grams, scripts often become large and complicated. Therefore, it is tough to find
those bugs by visual inspection, even though these are caused by trivial mis-
descriptions such as missing one node, or missing one edge, and so on. Our goal
is to detect those large amounts of trivial but hard-to-find bugs automatically
and exhaustively. Since our products already have a lot of massive scripts, we
should cover not only newly written scripts but also those existing scripts.

2.3 Related Work

Video games essentially have a large number of combinations of internal states
and external stimuli. This makes it difficult to detect problems which come out
under specific conditions by testing. Model checking has been applied to video
game developments since it can solve such problems by exhaustive verification.
Moreno-Ger et al. [13] proposed a method for verifying game scripts created in ⟨e-
Adventure⟩ platform using NuSMV. Radomski et al. [15] showed a framework in
which video game logics are modeled by State Chart XML (SCXML) formalism
and their properties can be checked by the SPIN model checker. Rezin et al. [16]
developed a method to model a multi-player game design as a Kripke structure
and to verify it by NuSMV. These studies show that applying model checking
to video game development is very promising and application to game logic
described by node-based visual scripts is also expected.

There have been a number of studies that have applied model checking to
verification of node-based state transition system designs. Statecharts and its
variants, such as UML state machine [17] and RSML (Requirements State Ma-
chine Language) [11], are one of the most popular notations for describing state
transition systems in a node-based manner. Chan et al. [4] provided a translation
from RSML notation to a model described by SMV language. This translation
procedure encodes components of the inputted RSML by SMV variables and
expresses changes of the components as transition relation. Zhao et al. [19] stud-
ied representation of Statecharts step-semantics as a Kripke structure, which is
a graph-based state transition representation, and carried out verification using
SMV model-checker. Jussila et al. [10] presented a representation of a subset
of UML state machines as Promela which is an input language of SPIN model-
checker.

In the semantics of Statecharts and its variants, their nodes represent states
and only simple actions (enter/exit or do action in the case of UML state ma-
chine) can be assigned to each node. While in the visual script notations that
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Fig. 4. System overview

we focus, each node expresses some game logic computation which can be per-
formed individually and can have a particular semantics. Thus it is difficult to
directly apply the existing procedures to the verification of such a visual script
notation. In this paper, we propose a method to translate from visual scripts to
models by SMV language.

3 Approach

3.1 System Overview

Fig. 4 shows the system overview of the visual script verification environment
with NuSMV. This environment carries out verification by converting a visual
script into an SMV model. First, the system generates a converter instance from
specifications to be checked and the corresponding node semantics. Then the
visual script is converted into an SMV model by using the converter instance.
NuSMV can verify whether the inputted visual script satisfies the specifications
or not. When the specifications are not satisfied, NuSMV outputs counterexam-
ples.

In this section, we explain the overview of the SMV models that our method
generates from visual scripts (section 3.2), specifications to be checked (section
3.3), and how to detect bugs using counterexamples (section 3.4).

3.2 Model Overview

We first show the overview of SMV model generated by the proposed method
with an example. Fig. 5 is an SMV model converted from the visual script shown
in fig. 3.

SMV Variables We prepare four types of SMV variables to describe the be-
havior of a visual script.

– Input and output variables represent activated ports of each node in visual
script. Since only one input/output port can be activated at the same time
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MODULE main
VAR

ScriptStart1Out : {none , Out};
SetEventMode2In : {none , Enable , Disable }; -- (1)
SetEventMode2Out : {none , Out}; -- (1)
MovieClip3In : {none , Start};
MovieClip3Out : {none , Finished , Skipped };
MovieClip3State : {Stopped , Playing , Finished , Skipped }; -- (2)
SetEventMode4In : {none , Enable , Disable };
SetEventMode4Out : {none , Out};
If5In : {none , In};
If5Out : {none , True , False};
EventMode : {true , false}; -- (3)

FAIRNESS MovieClip3State = Stopped; -- (4)
ASSIGN

init(ScriptStart1Out) := Out;
next(ScriptStart1Out) := none;
init(SetEventMode2In) := none;
next(SetEventMode2In) := case

ScriptStart1Out = Out : Enable; -- (5)
TRUE : none;

esac;
init(SetEventMode2Out) := none; -- (6)
next(SetEventMode2Out) := case -- (6)

SetEventMode2In = Enable | SetEventMode2In = Disable : Out; -- (6)
TRUE : none; -- (6)

esac;
init(MovieClip3In) := none;
next(MovieClip3In) := case

SetEventMode2Out = Out : Start;
TRUE : none;

esac;
init(MovieClip3Out) := none;
next(MovieClip3Out) := case

MovieClip3State = Finished : Finished; -- (7)
MovieClip3State = Skipped : Skipped; -- (7)
TRUE : none;

esac;
init(MovieClip3State) := Stopped; -- (8)
next(MovieClip3State) := case

MovieClip3In = Start : Playing; -- (9)
MovieClip3State = Playing : {Playing , Finished , Skipped }; -- (10)
TRUE : Stopped; -- (11)

esac;
init(SetEventMode4In) := none; -- (12)
next(SetEventMode4In) := case

MovieClip3Out = Finished : Disable; -- (13)
If5Out = True : Disable; -- (13)
TRUE : none; -- (14)

esac;
init(SetEventMode4Out) := none; -- (15)
next(SetEventMode4Out) := case -- (15)

SetEventMode4In = Enable | SetEventMode4In = Disable : Out; -- (15)
TRUE : none; -- (15)

esac;
init(If5In) := none;
next(If5In) := case

MovieClip3Out = Skipped : In;
TRUE : none;

esac;
init(If5Out) := none;
next(If5Out) := case

If5In = In : {True , False}; -- (16)
TRUE : none;

esac;
init(EventMode) := false;
next(EventMode) := case

SetEventMode2In = Enable | SetEventMode4In = Enable : true; -- (17)
SetEventMode2In = Disable | SetEventMode4In = Disable : false;-- (18)
TRUE : EventMode;

esac;

CTLSPEC AG(EventMode = true -> AF(EventMode = false)) -- (19)

Fig. 5. Converted SMV model
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in most cases4, we declare just one input/output variable for one node even
if the node has two or more input/output ports. E.g. SetEventMode2In and
SetEventMode2Out (fig. 5 (1)) are the input and output variable for the
leftmost Set Event Mode node in fig. 3. The value domains of input/output
variables are the names of ports and special value none which represents that
no port is activated. E.g. since Set Event Mode node has 2 input ports Enable
and Disable, the value domain of SetEventMode2In is none, Enable, and
Disable. When the value of SetEventMode2In is Enable, it means that the
input port Enable is active in the leftmost Set Event Mode node.

– Script variables represent variables used in visual scripts and states of ex-
ternal components that the visual scripts interact with. E.g. the global flag
“event mode” stated in 2.2 is a flag variable of the external game system
that the visual scripts interact with, and is declared as a script variable
EventMode (fig. 5 (3)). The specification often specifies the correct behavior
of those variables.

– State variables represent the internal state of each node whose semantics has
state transition. E.g. MovieClip3State is the state variable for Movie Clip
node (fig. 5 (2)).

Control Flow An edge in visual scripts express a portion of control flow that
is defined as a set of output port O and input port I, where I is activated iff O
is activated. Therefore, we can describe an edge as a value definition of an input
variable according to values of output variables in SMV models. E.g. the value of
SetEventMode2In becomes Enable when the value of ScriptStart1Out is Out
(fig. 5 (5)). It describes that Out port of Script Start node is connected to Enable
port of the leftmost Set Event Mode node.

Thus the value transitions of input and output variables express the con-
trol flow in visual scripts. For example, assuming that the control flow of Fig.
2.2 is: ScriptStart:Out → SetEventMode:Enable → SetEventMode:Out →
MovieClip:Start → MovieClip:Skipped → If:In → If:False , and fig. 6
shows the value transitions in this case.

Node Semantics Value definition of output variables, script variables and state
variables are specified by semantics of each node. E.g. the node semantics of
Set Event Mode is: “when it received input signal Enable or Disable, it edits
the global flag EventMode respectively, and immediately output signal through
Out port.” This node semantics corresponds to the definition of the variables
SetEventMode2Out and EventMode (fig. 5 (6), (17)).

3.3 Specification

A specification in this system consists of a specification formula, and the list of
script variable(s) used in the formula. For example, if we want to detect the bugs
4 There are a few exceptions such as a node that can accept 2 inputs simultaneously,
we address them in 4.2.
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-> State: 1.1 <-
ScriptStart1Out = Out
SetEventMode2In = none
...
MovieClip3State = Stopped
EventMode = false

-> State: 1.2 <-
ScriptStart1Out = none
SetEventMode2In = Enable

-> State: 1.3 <-
SetEventMode2In = none
SetEventMode2Out = Out
EventMode = true

-> State: 1.4 <-
SetEventMode2Out = none

MovieClip3In = Start
-> State: 1.5 <-

MovieClip3In = none
MovieClip3State = Playing

-> State: 1.6 <-
MovieClip3State = Skipped

-> State: 1.7 <-
MovieClip3Out = Skipped
MovieClip3State = Stopped

-> State: 1.8 <-
MovieClip3Out = none
If5In = In

-> State: 1.9 <-
If5In = none
If5Out = False

Fig. 6. Value transition of the example control flow

stated in 2.2, the specification can be described as CTL formula fig. 5 (19), and
the script variable fig. 5 (3). We can expect to verify those kinds of bugs with
symbolic model checking by modeling the visual scripts in SMV language.

In our system, users need to write a specification and corresponding node
semantics manually. However, users need to write them just once, and after
that users can verify scripts automatically. Therefore, we don’t think it is a big
problem.

3.4 Bug Detection Using Counterexample

As we stated in 3.2, a control flow of a node graph correspond to value transitions
of input and output variables. If the property given by CTLSPEC is violated,
NuSMV generates a counterexample which indicates the witness of property
violation. Since the counterexample can be obtained as the form of the value
transitions of SMV variables, we can identify the control flow which causes the
violation from the counterexample. For example, executing the model in fig.5
by NuSMV outputs a value transition shown in fig. 6. It means that the control
flow through Skipped port of Movie Clip node and False port of If node causes
violation of the specification. Thus we can detect a bug stated in 2.2.

3.5 Scope and Limitations

Soundness Strictly speaking, the behavior of our model is not exactly the same
as the actual behavior of target visual scripts especially from the viewpoint of
signal propagation delay. This is because our model needs one state transition
to propagate a signal, even though a visual script implementation usually has
no delay. For example, in the case of the following 2 signal propagations in fig.
3, the former is faster than the latter in our model, though both of them are the
same in visual script implementation. This difference might cause false positive
and false negative results of the verification.

– Movie Clip:Finished → Set Event Mode:Disable
– Movie Clip:Skipped → If:True → Set Event Mode:Disable
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External Components We also only focus on only behaviors of scripts which
are independent of external components. This is because such behaviors of ex-
ternal components are not documented completely and thus it is difficult to
model those behaviors. Even if it is difficult to model such behaviors completely,
we can partially capture them by assuming that those components behave non-
deterministically. For example, the behavior of Movie Clip node in fig. 3 depends
on the external components such as “movie player” and “game player input”,
and we abstract those behavior as non-deterministic state transition (fig. 5 (10)).
However, since this assumption allows the model to have non-existent behaviors,
it may cause false positive and negative.

State Explosion When the SMV model becomes too large, it is impossible to
fully avoid state explosion problem. We address this topic in section 6.

Scope We might be able to avoid the above limitations by more strict model-
ing. However, since strict modeling can enlarge the model size and causes state
explosion easily, we decided to accept these risks. In fact, we currently target
the detection of obvious mis-descriptions of visual scripts as stated in section
2.2 and the risk is not a practical problem as far as the result of our preliminary
evaluation.

4 Translation Algorithm

4.1 Translation Overview

The procedure that converts a visual script to a corresponding SMV model is
shown below with the example of the conversion from the visual script fig. 3
to the SMV model fig. 5. Note that we can implement this conversion as a
fully automatic process. However we need to describe specifications and node
semantics manually. We explain those issues in section 5.

1. Regarding VAR section in SMV models, process the following steps for each
node in the visual script:
(a) Declare an input and an output variable for the node. Their value domains

are none and the name of the ports of the node. E.g. Set Event Mode
node in fig. 3 has 2 input ports Enable and Disable and 1 output port
Out, so the input and output variables are like fig. 5 (1).

(b) If the semantics of the node has state transition, declare a state variable
for the node. E.g. fig. 5 (2) is a state variable for the Movie Clip node.

2. Add declaration of script variable(s) to VAR section according to the specifi-
cation, e.g. fig. 5 (3).

3. Add FAIRNESS constraints for each state variables, e.g. fig 5 (4) (see also:
section 4.3).

4. Regarding ASSIGN section in SMV models, process the following steps for
each node in the visual script:
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(a) Convert each input edges of the node to the definition of the input vari-
able, e.g. fig 5 (5) (see also: section 4.2).

(b) Define the output variable and the state variable by applying the node
semantics, e.g. fig. 5 (7)-(11) (see also: 4.4).

5. Add the value transition rules for the script variable, e.g. fig. 5 (17)-(18).

6. Insert SPEC in SMV models from the specification (fig. 5 (19)).

4.2 Convert Control Flow Edges

In our SMV model, edges in visual scripts are described as definitions of input
variables as we stated in section 3.2 Control Flow. Consequently, we can convert
edges with the following steps:

1. Define the initial value of the input variable as none, e.g. fig. 5 (12).

2. For each input edge to an input port of the node (from Port1 of Node1 to
Port2 of the node), add a rule: Node1Out = Port1 : Port2, e.g. fig. 5 (13).

3. Add the default rule that describes the case of no input signal, e.g. fig. 5
(14).

Thus, we can define all the input variable according to graph structure of visual
scripts automatically.

Handling Simultaneous Inputs As we stated in the section 2.2, more than
one node in visual scripts can work in parallel. It means that a node might receive
multiple input signals simultaneously. Since only one value can be assigned to
an input variable in our model, other input signals are ignored in such case. It
might cause an incorrect behavior if some nodes are assumed to handle multiple
input signals simultaneously (fortunately these are very rare though).

To avoid this problem, we can declare two input variables for the node whose
semantics require to handle two input signals in parallel.

4.3 FAIRNESS constraints

Some node semantics has the nondeterministic assignment for their state vari-
ables like MovieClip3State. This model accepts that it continues to have the
value Playing infinitely in the context of NuSMV. However, this model is not
reasonable, and is expected to finish in a short time. To avoid such a problem,
we introduce a fairness constraint which restricts the verification scope to only
“fair” state transition. Since our model intends that all nodes eventually return
to the initial state, we mechanically add fairness constraints for state variables
like fig. 5 (4). By adding this constraint, the behavior where the node never
returns to the initial state is not considered in verification by NuSMV.
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4.4 Apply Node Semantics

Node semantics are given as templates of definition of output, state(if the node
has state transition) and script variables, e.g. fig. 7. Note that these definitions
only depend on the variables of the node itself, so we can define node semantics
independent from graph structure. When our conversion algorithm add defini-
tions of output and state variables for a node, it selects the appropriate templates
for the node and applies them according to the context like the variable names for
the node. E.g. there are 2 Set Event Mode nodes, so our conversion algorithm ap-
plies the templates (fig. 7) to SetEventMode2Out and SetEventMode4Out (fig.
5 (6), (15)). However, writing those node semantics as templates is a manual
process. We address this issue in section 5.

@SetEventMode:define:output_variable
init(<output_variable >) := none;
next(<output_variable >) := case

<input_variable > = Enable | <input_variable > = Disable : Out;
TRUE : none;

esac;
@SetEventMode:rule:EventMode

<input_variable > = Enable | <input_variable > = Enable : true;

Fig. 7. An example of node semantics

5 Writing Node Semantics

As we stated in section 4.4, node semantics are described as templates of output,
state and script variables definitions. We show how to describe those definitions
in this section.

Writing the semantics for every kind of nodes sounds very hard. However,
we can classify most of nodes into five types empirically (section 6). Since these
semantics are very similar in each class, we can describe node semantics for those
classified nodes with a small human cost.

5.1 Output Variables

In our model, value of an output variable describes when and how the node sends
output signals. The definition of an output variable is described according to
the semantics of the node. E.g. Set Event Mode nodes output signal immediately
when they receive input, so the value of SetEventMode2Out is changed to Out

when its input variable SetEventMode2In has the value except none (fig. 5 (6)).
On the other hand, a Movie Clip node output signal after it finishes playing
movie, so the value of MovieClip3Out is not changed immediately (fig. 5 (7)).

Nondeterministical branch In the case of If node in fig. 3, it branches True or
False according to the condition value. A typical approach to model this branch
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is to decide the output signal non-deterministically since we do not consider data
flow and external behavior which affects the condition value. As shown in Fig. 5
(16), the next value of If5Out is assigned to True or False non-deterministically.
Thus, NuSMV verifies the both branch of True and False exhaustively.

5.2 State Transition

Some nodes might have state transition semantics where the node differently
behaves for the same stimuli depending on its internal state. To model such a
node, we introduce the state variable that represents the internal state of the
node.

In the case of Movie Clip node in fig. 3, it starts playing the movie clip when
it receives an input signal, and then outputs Skipped if the game player skips
playing the movie, otherwise it outputs Finished when it finishes playing the
movie. With this behavior in mind, we can define the following four states for
the state variable MovieClip3State:

– Stopped: the node is in the initial state.
– Playing: the node receives input and playing the movie clip.
– Finished: playing movie has finished, and the node sends output through

Finished.
– Skipped: a game player has skipped playing the movie, and the node sends

output through Skipped.

With these states, we can model the semantics of the Movie Clip node with
the following steps:

1. The initial state is Stopped (fig. 5 (8)).
2. When the node receives the input signal through Start, the state is changed

to Playing (fig. 5 (9)).
3. When the state is Playing, the next state is either Playing, Finished, or

Skipped non-deterministically. This description represents the behavior of
waiting for completion of the movie playback (fig. 5 (10)).

4. When the state becomes Finished or Skipped, the node outputs signal
through Finished or Skipped respectively (fig. 5 (7)), and the state is back to
Stopped (fig. 5 (11)).

5.3 Script Variables

Script variables represent variables used in visual scripts and states of external
components that visual scripts interact. By defining Script variables and de-
scribing the conditions for those variables, we can verify those conditions with
NuSMV. Note that we need not to define all the variables in visual scripts, but
minimum variables that we want to verify in the specification.

Fig. 5 contains a script variable EventMode that expresses the global flag
variable “event mode” in the game system. The value of EventMode is defined
according to the input of Set Event Mode nodes (fig. 5 (17)). The specification
for the script variable can be described in CTLSPEC description, we can check the
specification stated in 2.2 with NuSMV.
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Table 1. Preliminary evaluation of our method

# # of nodes # of vars conv. time[s] eval. time[s] detected?

#1 156 356 5.434 192.786 false

#2 94 214 3.878 3.330 false

#3 37 84 1.746 0.056 false

#4 49 119 2.301 0.111 false

#5 177 414 6.625 36.675 true

#6 73 162 2.768 0.173 false

#7 162 408 9.187 98.102 true

#8 430 980 13.286 - -

Environment: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz / 32GB / Windows 7
Enterprise Service Pack 1 (64 bit) / NuSMV 2.6.0

6 Preliminary Evaluation

For a preliminary evaluation, we implemented a prototype and applied it to the
visual scripts that are randomly selected from the scripts used in the production
for FFXV. However, we arbitrary selected a very large script only as #8 so that
we can identify the limitation on the script size of our method. Table 1 shows the
results of the evaluation. The descriptions of these columns are the following:

– #: Script number.
– # of nodes: The number of visual script nodes in the target script.
– # of vars: The number of SMV variables in the generated SMV model.
– conv. time: Conversion time from the visual script to the SMV model with

our method. We tried 5 times for each script and adopted a median value of
those trial.

– eval. time: Execution time of NuSMV for the model. We tried 5 times for
each script and adopted a median value of those trial.

– detected?: Whether NuSMV detected a problem in the script or not.

Node Semantics We prepared an encoding by SMV language for each node in
the scripts. As stated in section 5, we can straightforwardly prepare an encoding
for nodes with simplified semantics. The eight scripts shown in Table 1 have 164
kinds of nodes, and they are classified as follows:

1. single output: 98 kinds of nodes.
2. multi-outputs with conditions (non-deterministic choice): 7 kinds of nodes.
3. multi-outputs with state-transition: 14 kinds of nodes.
4. multi-outputs with conditions (non-deterministic choice) and state-transition:

12 kinds of nodes.
5. entry point: 3 kinds of nodes.
6. node with custom semantics: 30 kinds of nodes.
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30 kinds of nodes have custom semantics and we manually prepared encodings
for them. However, we can mechanically translate the 134 kinds of nodes (82%)
which are classified to 1) to 5) into the SMV model. This result demonstrates
that our translation method has enough availability in practical use.

Results Regarding precision, our method found counterexamples on two scripts
during the preliminary evaluation. We confirmed with the game designers that
the counterexamples are not false positives. 5 This result demonstrates that our
method can detect the specific types of bugs that we are focusing on.

Regarding recall, we also checked these scripts by visual inspection. As long
as our inspection, there was no false negative.

Limitation It appeared that our algorithm cannot handle very large scripts,
since the verification of #8 had not finished within 3 hours. Improving our
algorithm to handle those large scripts is future work.

7 Summary and Future Work

We described an automatic verification method for node-based visual script no-
tation for efficient game production. Our method automatically converts visual
script implementation to the input model for NuSMV. We confirmed through
a preliminary evaluation that our method can detect the specific types of bugs
that we are focusing on in realistic time on most of the visual scripts used in the
production for FFXV.

A next step for extending this work would be compositional verification [2].
It appears that there are some very large scripts used in the production for
FFXV, that our method cannot handle. If we can split the model and verify
those sub-models separately, we can reduce the exponential order of the verifi-
cation and expect that those verifications can be handled in a reasonable time.
Also, if we can verify more than one script together, we can track the control flow
across the scripts and can expect to reduce false positives/negatives. Composi-
tional verification might make it possible to verify multiple models too. Another
next step would be the automated generation of node semantics. Currently, we
need to write node semantics manually. If we can extract semantics from node
implementation, we can increase the range of automation of our method.
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