
Velocity-based compression of 3D rotation, translation, and scale
animations for AAA video games

David Goodhue
Square Enix Co., LTD

Tokyo, Japan

ABSTRACT
In our previous publication [Goodhue 2017], we presented a proto-
type based on promising new techniques for how the state-of-the-
art in animation compression for video game engines might be ad-
vanced. Later that year, we completed development on a production-
quality version of that technology which has since seen active use
in the ongoing production of future AAA titles. Many of our pre-
vious hypotheses were put to the test, and the algorithms were
generalized to support translation and scale animations keys in
addition to rotations.

Having used this new technology for quite some time now, we
were able to confirm our expectations regarding the sort of technical
problems it presents, as well as how to solve them. We are also able
to compare our results to other state-of-the-art techniques for the
first time, thus confirming the efficacy of our method.

CCS CONCEPTS
• Computing methodologies→ Animation.

KEYWORDS
animation, compression, video games

ACM Reference Format:
David Goodhue. 2020. Velocity-based compression of 3D rotation, transla-
tion, and scale animations for AAA video games. In Special Interest Group
on Computer Graphics and Interactive Techniques Conference Talks (SIG-
GRAPH ’20 Talks), August 17, 2020. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3388767.3407392

SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Special Interest
Group on Computer Graphics and Interactive Techniques Conference Talks (SIGGRAPH
’20 Talks), August 17, 2020, https://doi.org/10.1145/3388767.3407392.

1 RELATEDWORK
While it seems likely that there may be some interesting propri-
etary alternatives being used privately by some companies, in
terms of what’s been published in recent years, Nicholas Frechette’s
ACL [Frechette 2020], as well as his previous work [Frechette 2017],
appear to be the most relevant. Both techniques are very effective at
shrinking data by aggressively quantizing keyframe values within
tight ranges using bit widths just large enough to retain sufficient
accuracy. This is similar to our work, which also utilizes range
reduction as well as favoring smaller bit widths when possible.

Our implementation of velocity-based compression is in many
respects an extension of those techniques. The values being quan-
tized often represent velocities rather than absolute pose values,
requiring multiple sets of range data to handle both scenarios. Fur-
thermore, keyframe data exists sparsely as opposed to maintaining
uniform key counts each frame. This requires substantially more
complexity in both tools and runtime code, but we aim to demon-
strate how it can produce favorable results.

2 TERMINOLOGY
Throughout this document, we shall refer to the algorithm from
Nicholas Frechette’s GDC presentation [Frechette 2017] as "Simple".
Additionally, for the purposes of this document, all references to
his ACL [Frechette 2020] are specifically regarding ACL version
1.3, the latest ACL release at the time of this writing.

We also refer to our velocity-based compression as "Predictive",
because in some cases it essentially predicts a future pose value,
then applies a relative adjustment key in realizing its true destina-
tion.

3 GOAL
In past projects, as well as in those we expect to encounter in the
future, our primary use case for improved animation compression
has been to reduce our animation memory footprint, the bulk of

https://doi.org/10.1145/3388767.3407392
https://doi.org/10.1145/3388767.3407392


SIGGRAPH ’20 Talks, August 17, 2020, Virtual Event, USA D. Goodhue

which tends to be rotational data. Translation and scale keys oc-
cupy a significant but much less concerning portion of our total
animation data. CPU performance is also a concern, but only in
that the decompression cost must remain reasonable, as it tends to
be in most game engines.

Concerning loss of accuracy in decompressed poses, provided
that those viewing the game aren’t aware of any degradation and
that accuracy tuning is not consuming the time of our design team,
it’s not a problem. Typically, having a relatively loose accuracy de-
fault for gameplay animations, then another which is more strict for
high resolution cinematic cut scenes, works out well. Additionally,
the ability to override these per character or per animation clip is
important. Of those two default settings, by far our largest concern
is the more aggressive compression level needed for ordinary game-
play. This is because cut scenes tend to stream in most of their data
as they are playing, dumping previous chunks as they progress,
making total size much less of an issue. As for the more relaxed
gameplay default, it’s not that we are tolerant of our characters
looking worse than they should, it’s because is it so minor that it
goes unnoticed. Unless a camera is zooming up close as is typically
only seen in our games during cut scenes, such inaccuracy will
remain a secret.

In summary, our main goals were to shrink rotation data signif-
icantly, shrink translations and scales as well within reason, and
avoid algorithms which will yield poor CPU performance,

4 IMPLEMENTATION
Unlike what was used in our first prototypes, the engine into which
we were integrating this technology stores all bone rotations in
exponential map format. In other words, each rotation is stored as
the natural logarithm of its quaternion, or "quatlog" for short. This
requires that animation decompression produce local-space rota-
tion values which are quatlogs rather than quaternions as the case
would be in most engines. There is no reliable way to accurately
interpolate between quatlogs without a costly conversion to quater-
nion followed by a costly slerp. This is not a major problem for
our compression algorithm, however, since it can just simulate this
inaccurate interpolation of quatlogs offline, and anytime the result
isn’t accurate enough, make sure that a keyframe exists instead.
This likely means that we are removing somewhat fewer keys than
a typical quaternion-based engine which uses slerp approximations
between keys might do, but in comparison to our quaternion-based
prototype, the difference seems minor.

We found other benefits to using quatlogs as well, especially the
fact that we wished to sometimes have rotation keys which change
only the angular speed while preserving the axis of rotation from
the previous velocity. This is a costly operation requiring sin or cos
if performed accurately with quaternions, but with quatlogs, it is
very cheap. Furthermore, our runtime decompression performance
is improved because applying a velocity in quatlog space is cheap,
costing nothing more than an addition of 3 floating point numbers.
In a typical game programming scenario, that same operation would
be more expensive, because one would generally need to check that
the resultant quatlog has not extended beyond the unit sphere, and
wrap its magnitude if it has. However, since animation playback can
be perfectly simulated offline in tools, we never insert velocities

which need to be wrapped except for in the extremely rare but
useful special case of applying our highest precision key type.

5 RESULTS
Our accompanying materials show the results of an ambitious test
comparing 4000+ production-quality animation clips using our
velocity-based algorithm against both ACL and Simple. We are able
to compare to Simple despite it not being publicly available thanks
to it being part of our proprietary holdings. ACL and Simple are
similar technologies which, not surprisingly, yield similar results to
each other. By applying our preferred default error threshold and
virtual bone length settings for gameplay animation to all three,
we often see data sizes at around 50 percent of what the other
techniques require at equivalent error thresholds.

It’s not a perfect comparison, as all three algorithms fail to keep
their max error anywhere near the specified error threshold on a
small subset of the total clips. In all such cases, those are either
bugs or a lack of the features needed to handle such exotic data.
For example, special handling for instant teleportation across ob-
scenely long distances. While it’s unfortunate that time constraints
prevented a more polished test at this time, the limited number of
such errors is not an indication of the validity of the compression
techniques involved.

We have also measured in-game CPU performance against a fully
optimized, production-quality implementation of Simple, finding
that decompression costs are consistently reduced by more than
half when using our default settings. However, decompression costs
in either case are far below a level which would cause concern for
our productions. As for ACL, it would be fruitless to attempt such a
comparison at the moment without first spending significant time
to create a similarly thorough, engine-specific integration. While it
would allow for testing, naively copying the pose over from one
system to the other each time it’s computed would add enough
additional cost that any comparisons would hold little relevance.
Likewise, ignoring the cost of such copyingwould be equally invalid.
ACL appears to be carefully crafted with performance in mind all
the way from the math library up, so it is likely a strong contender.

6 CONCLUSIONS
The hypotheses and conclusions proposed in our previous publica-
tion have been further confirmed. The implementation of this sort
of system is quite complex and involved, but for teams with the
resources to do it, significant memory savings and stellar CPU per-
formance awaits. However, nowadays, with fantastic open source
alternatives such as ACL being freely available, it won’t make sense
for most teams to pursue something like this unless they desperately
wish to go beyond such easy and reliable options.

REFERENCES
Nicholas Frechette. 2017. Simple and Powerful Animation Compression. (March 2017).

https://www.gdcvault.com/play/1024009/Simple-and-Powerful-Animation GDC
2017.

Nicholas Frechette. 2020. Animation Compression Library. https://github.com/
nfrechette/acl

David Goodhue. 2017. Velocity-Based Compression of 3D Animated Rotations. In ACM
SIGGRAPH 2017 Posters (Los Angeles, California) (SIGGRAPH ’17). Association for
Computing Machinery, New York, NY, USA, Article 14, 2 pages. https://doi.org/10.
1145/3102163.3102236

https://www.gdcvault.com/play/1024009/Simple-and-Powerful-Animation
https://github.com/nfrechette/acl
https://github.com/nfrechette/acl
https://doi.org/10.1145/3102163.3102236
https://doi.org/10.1145/3102163.3102236

	Abstract
	1 Related Work
	2 Terminology
	3 Goal
	4 Implementation
	5 Results
	6 Conclusions
	References

